Неорганические соли в пиротехнической промышленности
По степени гомогенности начальной системы различают несколько видов горения:
- горение твердого или жидкого топлива за счет кислорода воздуха - гетерогенное горение;
- горение взрывчатых газовых (или жидких) смесей или индивидуальных взрывчатых веществ – горение гомогенное [4].
Пиротехнические составы представляют собой механические смеси твердых тонко измельченных компонентов, по степени гомогенности они находятся посередине между конденсированным топливом и индивидуальными веществами (или гомогенными смесями) [4]. Степенью гомогенности определяются многие свойства пиротехнических составов.
Горение пиротехнических составов осуществляется теплопередачей из зоны реакции к слоям, в которых идет подготовка к процессу горения. На том же принципе основано и воспламенение пиросоставов. Для возникновения горения необходимо создать местное повышение температуры в составе, что достигается обычно непосредственным воздействием на состав горячих пороховых газов или применением специальных воспламенительных составов [2].
Когда пиросостав приводится в действие огневым импульсом и горние его происходит в открытом пространстве, то скорость горения его невелика (обычно несколько мм/с) [2].
Если же горение происходит в замкнутом пространстве или если в качестве инициатора используется капсюль-детонатор, то может возникнуть взрыв, скорость которого измеряется сотнями, а иногда и тысячами м/с [2].
В некоторых случаях ускорение горения наблюдается и при сгорании в открытом пространстве большого количества пиротехнических составов.
1.1.4 Назначение компонентов в пиротехнических составах
В пиротехнические составы входят следующие компоненты:
а)горючие;
б)окислители;
в)связующие (цементаторы) - органические полимеры, обеспечивающие механическую прочность уплотненных (спрессованных) составов;
г)ускорители и замедлители горения;
д)флегматизаторы – добавки, уменьшающие чувствительность составов к трению или удару;
е)вещества технологического назначения (жирующие добавки, растворители для связующих и др.) Кроме того, в составы сигнальных огней вводятся вещества, сообщающие окраску пламени, а в дымовые составы – дымообразующие вещества [5].
В некоторых случаях один и тот же компонент может выполнять в составе несколько различных функций. Так связующие вещества всегда выполняют в составе функции горючих, а иногда и замедлителей горения. А, например, в сигнальных составах нитрат стронция является окислителем и одновременно сообщает красную окраску пламени.
1.2 Неорганические соли в качестве компонентов пиротехнических составов
Неорганические соли в пиротехнике могут играть роль окислителей, горючих или сообщающих окраску пламени веществ. Для рассмотрения, как пример, приведем важнейшие из них и конкретно укажем их назначение.
1.2.1 Окислители
Смесь горючего с окислителем является основой всякого пиротехнического состава.
Сгорание горючих веществ на воздухе протекает обычно медленнее, чем сгорание их за счет кислорода окислителя, и поэтому смеси, не содержащие в себе окислителя, используются пиротехниками реже, чем составы с окислителями [5].
Кроме кислородных соединений, в качестве окислителей используются иногда и вещества, не содержащие в себе кислорода [5].
Окислителями могут быть и простые вещества – неметаллы, находящиеся при обычных условиях в твердом состоянии [5].
Так, в форме горения могут протекать реакции соединения между высококалорийными металлами (Mg, Al, Zr и др.) и такими неметаллами, как сера, фосфор, а также азот, углерод и бор [1]. Однако использование реакций такого типа ограничено. В некоторых многокомпонентных осветительных и зажигательных составах используется реакция [5]:
2Al+3S = Al2S3+140 ккал (582 кДж),(1.1)
что соответствует выделению 0,9 ккал (3,75 кДж) на 1 г смеси [5].
Из сложных веществ в качестве окислителей могут быть использованы только те, для разложения которых с выделением кислорода, галогенов или серы требуется значительно меньше тепла, чем выделяющееся при окислении горючего. Исключением является тот случай, когда образуется взвесь тонкодисперсного порошка горючего в воздухе [5].
В специальных пиротехнических смесях окислителями могут служить галогениды, а также сульфиды и нитриды малоактивных металлов (меди, свинца и др.). Соединение магния или алюминия с азотом протекает с выделением вполне ощутимого количества тепла [5]:
3Mg+N2 = Mg3N2+115 ккал (482кДж),(1.2)
что соответствует 1,14 ккал (4,76 .кДж) на 1 г смеси реагирующих веществ [5].
Таким образом, весьма возможно, что способными к горению окажутся смеси Mg или Аl с некоторыми богатыми азотом органическими соединениями (например, гуанидином CN3H5). Также, очевидно, будут способны к горению и смеси Mg или Аl с комбинированным серно-азотным балансом, например смесь с тиомочавиной [5]:
(NH2)2C + S+4Mg = Mg3N2+MgS+2H2(1.3)
Далее будут рассмотрены только те соединения, окислительное действие которых обуславливается содержащимся в них кислородом.
Легкость отщепления кислорода от молекул окислителей объясняется сравнительно малой прочностью непосредственной связи между кислородом и другими атомами, например, хлором, азотом [1].
По химическому составу окислители, применяемые в пиротехнике, можно разделить на следующие основные группы: 1) хлораты; 2) перхлораты; 3) нитраты; 4) окислы металлов [1].
Некоторые из окислителей одновременно служат и носителями цветности пиротехнического пламени. Они называются цветнопламенными окислителями. К ним принадлежат, например, хлорат бария и нитрат стронция.
1.2.1.1 Хлораты
Хлораты представляют собой соли хлорноватой кислоты HClO3.
Хлорноватая кислота соединение неустойчивое, быстро разлагается; при разложении ее выделяется газ ClO2 (двуокись хлора), который на воздухе поджигает такие вещества, как хлопок, бумага, дерево [3].
Хлорноватая кислота с различными металлами образует соли. В пиротехнике применяются, главным образом, хлорноватокислый калий KClO3 и хлорноватокислый барий Ba(ClO3)2·H2O, реже применяется хлорноватокислый натрий NaClO3, отличающийся сравнительно большой гигроскопичностью[3].
Все хлораты разлагаются, выделяя тепло и свободный кислород.
Хлорноватокислый калий (бертолетова соль) KClO3 (молекулярный вес 122,56) впервые был получен ученым Бертолле, по имени которого и называется [3].
Хлорат калия получается хлорированием извести с последующим обменным разложением хлорноватокислого кальция с солями калия по уравнениям [3]:
6Ca(OH)2 + 6Cl2 = Ca(ClO3)2 + 5CaCl2 + 6H2O,(1.4)
Ca(ClO3)2, + 2KCl = CaCl2 + 2KClO3.(1.5)
Полученный таким образом хлорноватокислый калий в случае надобности может быть очищен перекристаллизацией из горячей воды [3].
Хлорат калия с трудом растворяется в воде при низких температурах; при охлаждении горячего концентрированного раствора хлорат калия выкристаллизовывается. По внешнему виду он представляет собой мелкие белые ромбические кристаллы. Температура плавления 357,1°С, температура разложения 364°С. При этой температуре хлорат калия разлагается сравнительно медленно, часть кислорода, которая выделяется при разложении KСlO3, окисляет оставшийся неразложившимся KСlO3 в соединение KСlO4 (хлорнокислый калий) по уравнению [3]: