Молекулярные спектры
Часть1. Общие характеристики спектров.
Часть2. Электронные спектры поглощения молекул.
Часть3. Колебательные спектры поглощения молекул.
Часть 1. Общие характеристики спектров. Теоретический минимум.
· Энергия спектрального перехода.
· Энергетические характеристики.
· Диапазоны излучения и области молекулярной спектроскопии.
Спектральный переход в атоме или в молекуле вызван поглощением или испусканием электромагнитного излучения. Электромагнитное излучение состоит из частиц-фотонов, не имеющих массы покоя. Энергия фотона E определяется частотой излучения и равна Eh Коэффициент пропорциональности - константа Планка, равная h=6.627´10-34Дж×с=6.627´10-27 эрг×с. Поглощение фотона приводит к возбуждению атома или молекулы с более низкого уровня Eна более высокий энергетический уровень E*. Баланс энергии при переходе описывается уравнением Планка-Эйнштейна
.
Уровни дискретны, и поглощаемые энергии также дискретны.
Поэтому регистрируемые частоты образуют также дискретное множество, и их можно нумеровать индексами уровней:
.
В большинстве молекулярных спектрах в первую очередь проявляется переход с основного на первый возбуждённый уровень. Единицы измерения энергии диктуются возможностями наиболее точной калибровки регистрирующего устройства.
В области оптической спектроскопии излучение разделяют с помощью дифракционных решёток, призм, линз. Очень хорошо разработаны способы точного измерения длин волн. Поэтому и энергию излучения принято калибровать в таких единицах, которые наиболее соответствуют конкретной экспериментальной технике. Такой единицей является обратная длина волны 1/. Её называют волновым числом и обозначают .
Вся накопленная до настоящего времени информация об энергиях переходов выражается в обратных сантиметрах (см-1). Этим обстоятельством диктуется выбор системы единиц. Удобна система СГС (сантиметр, грамм, секунда). Единица энергии в ней ЭРГ.
Связь длины волны с частотой обратно пропорциональная, а с волновым числом прямо пропорциональная, константа пропорциональности – скорость света c=3´1010см/с=3´108м/с:
.
Отсюда уравнение Планка –Эйнштейна можно представить в виде
На этом основании можно уровни энергии непосредственно выразить в единицах волнового числа. Так поступают в атомной спектроскопии.
Если измерено волновое число спектрального перехода, то одно из равенств даёт
Следуя этой формуле, уровни энергии можно выразить в единицах волнового числа. Для этого следует разделить их на скорость света и константу Планка
Так поступают в атомной спектроскопии.
Уровни энергии, выраженные в единицах волнового числа, называют спектральными термами. Это величины Tn и Tm.
Электронные переходы в молекулах осуществляются ориентировочно в области значений волновых чисел порядка 104 см-1.
Длины волн такого излучения лежат в диапазоне 10-4¸10-5 см.
Это сотни нанометров (1 нм=10-9м=10´10-8см=10 A0).
Область цветного зрения человека охватывает длины волн 400-700 нм.
Непосредственно к этой области примыкают диапазоны:
- ультрафиолетовый со стороны квантов большей энергии и
- инфракрасный со стороны квантов меньшей энергии.
Обычная область изучения валентных электронных возбуждений молекул охватывает видимый и ближний ультрафиолетовый диапазоны.
Колебательные переходы в молекулах осуществляются ориентировочно в области значений волновых чисел порядка 102 ¸103 см-1.
Длины волн такого излучения лежат в диапазоне 10-2¸10-3 (до 10-4) см.
Это инфракрасный диапазон излучения. С ним граничит видимый (со стороны
больших энергий) и микроволновой (со стороны меньших энергий)
Обычная область изучения молекулярных колебаний охватывает инфракрасный диапазон и примыкает к диапазонам излучений видимого (обертоны колебаний) и микроволнового (вращательно-колебательные движения молекул).
Часть 2. Электронные спектры поглощения. Электронные спектры красителей и модель одномерного ящика.
Для химии наибольший интерес представляют спектральные переходы электронов между уровнями граничных орбиталей молекул (ВЗМО и НСМО).
Наиболее лабильные внешние валентные электроны молекул переходят на близлежащий вакантный уровень. Электронные спектры молекул обычно регистрируют в виде широких полос с достаточно выраженным максимумом поглощения (рис. ).
Среди всех регистрируемых полос электронного спектра при переходе ВЗМО«НСМО частота, волновое число и энергия кванта минимальны, а длина волны максимальна. Реальные полосы часто не столь гладкие кривые из-за дополнительных переходов в молекуле .
Полезно рассмотреть задачу, в которой измеренные энергетические параметры электронных спектров удаётся количественно связать с уровнями граничных МО. Это классическая задача о максимумах полос поглощения в электронных спектрах карбоцианиновых красителей, решённая Бейлисом и Куном.
Примитивная модель одномерного потенциального ящика оказывается на удивление точной при описании энергий возбуждения ВЗМО«НСМО.
Задача 1
В гомологическом ряду, образованном четырьмя карбоцианиновыми красителями измерены максимумы полос электронных спектров поглощения. Формулы соединений и
измеренные величины следующие. Определите длину повторяющегося молекулярного фрагмента в гомологическом ряду полиенов.
|
Таблица.
Исходные данные, промежуточные вычисления и конечный результат
Измерено |
Вычисления студентов в ходе решения задачи | ||||
max |
max см-1 |
(9+2k)× max |
Значения 1/a2 |
< aCH >, | |
k |
Экспер. |
см | |||
0 |
5900 |
16949.15 |
9×16949 = 152540 |
5.0325×1015 | |
1 |
7100 |
14084.50 |
11×14084 = 154924 |
5.1117×1015 | |
2 |
8200 |
12195.12 |
13×12195 = 158535 |
5.2305×1015 | |
3 |
9300 |
10752.69 |
15×10753 = 161295 |
5.3196×1015 | |
Усреднение Þ |
0.5174×1016 |
1.39×10-8 |