Мир кристаллов
Рефераты >> Химия >> Мир кристаллов

Каждый отдельный кристаллик льда, каждая снежинка, хрупка и мала. Часто говорят, что снег падает, как пух. Но даже это сравнение, можно сказать, слишком «тяжёлое»: снежинка гораздо легче, чем пушинка. Десяток тысяч снежинок составляют вес одной копейки. Но, соединяясь в огромных количествах вместе, снежные кристаллы могут остановить поезд, образовав снежные завалы.

1.2. Кристаллы в облаках.

Кристаллики льда могут в несколько минут погубить самолёт. Обледенение – страшный враг самолётов – тоже результат роста кристаллов.

Здесь мы имеем дело с ростом кристаллов из переохлаждённых паров. В верхних слоях атмосферы , водяные пары или капли воды, могут долго сохранятся в переохлаждённом состоянии. Переохлаждение в облаках доходит до - 30 ºс.

Но как только в эти переохлаждённые облака врывается летящий самолет, тотчас же начинается бурная кристаллизация. Мгновенно самолет оказывается облепленным грудой, быстро растущих кристаллов льда.

4. Заселение кристалла дефектами.

Кристаллы заселён множеством различных дефектов. Дефекты как бы оживляют кристалл. Благодаря наличию дефектов, кристалл обнаруживает «память» о событиях, участником которых он стал или когда был, дефекты помогают кристаллу «приспосабливаться» к окружающей среде.

Дефекты качественно меняют свойства кристаллов. Даже в очень малых количествах, дефекты сильно влияют на те физические свойства, которые совсем или почти отсутствуют в идеальном кристалле, являясь, как правило, «энергетически выгодными», дефекты создают вокруг себя области повышенной физико-химической активности.

1. Решеточные дефекты:

Решеточные дефекты подразделяются на вакансии, атомы внедрения и примесные атомы.

Вакансией называется незанятый частицей узел кристаллической структуры. Если пустой узел образуется в результате удаления частицы из объёма кристалла на его поверхность, то вакансия называется - дефектом по Шоттки.

Дефекты по Шоттки снижают плотность вещества в кристалле.

Они чаще встречаются в кристаллах с достаточно плотной упаковкой частиц близких размеров. В этих случаях в междоузлиях кристаллической структуры нет места для лишних частиц.

Если частица перемещается из узла в междоузлие, то такое нарушение правильности решётки называется дефектом по Френкелю.

Дефекты по Френкелю на величину плотности практически не влияют.

Дефекты по Френкелю, наоборот, свойственны кристаллам с неплотными упаковками и частицами по своим размерам.

2. Одномерные дефекты:

Одномерные дефекты кристаллической решетки называются дислокациями. Дислокации нарушают правильное чередование кристаллических плоскостей.

Во многих кристаллах, особенно металлических, дислокации сравнительно легко перемещаются и размножаются.

3. Двумерные дефекты:

Двумерные дефекты образуются границами кристалла. Границы нарушают периодичность строения кристалла. Одним из важных дефектов кристаллической структуры, является внешняя поверхность твердых тел. Во-первых, именно через поверхность кристалл взаимодействует со своим окружением.

Во-вторых, частицы на поверхности связаны с решеткой значительно слабее, чем частицы, находящиеся в объёме.

5. Жидкие кристаллы и ультразвук.

До сих пор мы рассматривали не свойства жидких кристаллов, которые сегодня нашли воплощение в технических устройствах. Однако, как не эффективны сегодняшние применения холестеринов, нематиков, смектиков, перспективы их использования ещё более удивительны. Многообразие мезоморфного состояния вещества позволяет предположить, что жидкие кристаллы завтра вторгнутся в самые различные области деятельности человека. Сейчас мы кратко рассмотрим, как взаимодействуют между собой ультразвук и жидкие кристаллы.

Попадающая на жидкий кристалл звуковая волна, приводит к изменению направления де ректора, что в свою очередь изменяет оптические свойства.

Это означает, что жидкие кристаллы способны делать видимые звуковые колебания. Эти колебания создают периодические сдвиговые деформации слоя жидкого тематического кристалла, меняя интенсивность проходящего паиризованного света.

Жидкий кристалл отделяет ещё одно интересное применение. Медики и физики уже давно изыскивают возможности наблюдения внутренних органов человека, не подвергая его действию рентгеновского излучения.

Идея замены рентгеновского излучения ультразвуком возникла довольно давно. Идея заманчива, ведь ультразвук для человеческого организма совершенно безвреден. Однако, всё упиралось в трудности с регистрацией ультразвукового потока, прошедшего тела пациента. И вот тут жидкие кристаллы робко предложили свою помощь. Жидкие смектические кристаллы оказались чувствительными к ультразвуку. При этом как уже отмечали, нарушается молекулярная упаковка смектика, и оптическая картина этих нарушений позволяет судить о состоянии внутренних органов человека.

Исследования, которые позволят увеличить чувствительность смектиков к ультразвуку, только начинаются.

6. Заключение.

Повествование о живом и не умирающем не может быть завершено, его можно лишь оборвать. Именно это я и вынуждена сделать, рассказав о «живом жидком кристалле» лишь малую толику из того, что о нём известно.

Я попыталась рассказать о том, что такое кристаллы, каковы их свойства, возможные применения.

Жидкие кристаллы, ещё далеко, далеко не распознаны. Нет пока теории, которая бы смогла учить и объяснять все макроскопические свойства. Ещё не все аналоги твердых кристаллических эфектов в жидких кристаллах обнаружены.

Биологи только нащупывают подходы к изучению жидкокристаллического состояния биологических объектов. Словом «белых пятен» на кристаллической копии пока больше, чем исследованных. Эти «белые пятна» ждут своих первооткрывателей.

В развитии каждой отрасли науки, если периоды открытий, забвений, взлета не является исключением наука о кристаллах. И если период забвения закончился, то взлёта кристаллы, видимо, не достигли. Если вначале взлёта присутствовали элементы восторга, бума, то теперь пришло время оглянуться и поразмыслить.


Страница: