Микроэмульсии для очистки от масел и загрязнений иной природы
Микроэмульсии для чистки твердых поверхностей, главным образом основанные на НПАВ, уже заняли в промышленности прочные позиции. Обычно они продаются в виде концентратов, которые нужно разбавлять перед употреблением. Отсюда ясно, что изотропная область должен быть локализована преимущественно в «водном» углу диаграммы. Типичный пример подходящей модельной системы представляет смесь СЕб, декана и воды при 30 0C. НПАВ весьма пригодны для таких композиций, поскольку их можно совмещать с ионными «структурообразователями» — фосфатами или цитратами. Существенным недостатком таких систем является сильная зависимость от температуры. Один из способов увеличения температурного интервала состоит в использовании смеси НПАВ, например смеси этоксилированных спиртов с длиной полиоксиэтиленовой цепи ниже и выше, чем у оптимального НПАВ. Продажные этоксилаты сами имеют широкое распределение по гомологам и поэтому образуют микроэмульсии в более широком температурном интервале, чем индивидуальные модельные соединения. Смешивая коммерческие НПАВ, можно добиться еще большего увеличения температурных интервалов.
Рис. 15. Удаление смазочного масла с помощью трех различных микроэмульсий, относящихся к биконтинуальным фазам
Использована смесь этоксилатов со средним значением ГЛБ, равным 10.7, и алифатических углеводородов с точками кипения в интервале от 190 до 240 °С. Удаление масла с использованием только углеводородов и трихлорэтана приведено для сравнения. Количество остаточного масла определено измерением флуоресценции
Рис. 16. Фазовая диаграмма системы СЕб-декан-вода при 30,40 и 50 °С
При 50 0C имеются две небольшие изотропные области в «водном» углу диаграммы. При 40 0C области существования этих фаз увеличиваются, но все еще остаются не связанными. При 30 0C появляется одна большая изотропная область в «водном» углу
Микроэмульсии и проблема повышения нефтеотдачи
Нефтяные месторождения состоят из пористых пород, обычно известняков или песчаников, в которых поры заполнены нефтью и солевым раствором. Пористве породы окружены непроницаемой породой. Проницаемость зависит от размера пор, типичный размер которых составляет 50-1000 нм. В типичном нефтяном пласте 10-25% объема пор занято рассолом, 55-80% — нефтью, остальное занимают пустоты. Обычно давление в пласте повышенное, а температура равна 70-100 °С.
Из вновь пробуренных скважин нефть выталкивается собственным давлением. За стадией самопроизвольного производства нефти следует выкачивание ее с помощью насосов. Вместе эти два процесса считают первичной нефтеотдачей. В среднем при этом из пласта вытесняется 15-20% содержащейся в нем нефти. На следующей стадии — вторичной нефтеотдаче — для вытеснения дополнительного количества нефти используется вода. В этом процессе воду закачивают в скважину, и она, продвигаясь наружу, как поршень, вытесняет нефть. Неподвижная нефть вытесняется через скважину.
Эффективность вторичной нефтеотдачи, как правило, невелика, особенно если вязкость нефти выше вязкости вытесняющей воды. Первичная и вторичная нефтеотдачи вместе обычно позволяют добыть из пласта значительно меньше половины общего запаса нефти.
Любой процесс нефтевытеснения, следующий за заводнением, относят к повышенной или третичной нефтеотдаче. Закачка растворов ПАВ, называемая микроэмульсионным заводнением, достаточно перспективна в этом плане. Интерес к микроэмульсиям с точки зрения повышения нефтеотдачи вызван их способностью понижать межфазное натяжение до ультранизких значений.
Рис. 17. Схема добычи нефти
В связи с этим считали, что добыча нефти с помощью ПАВ будет чрезвычайно выгодна экономически. В настоящее время улучшение техники бурения привело к снижению интереса к использованию микроэмульсий для нефтевытеснения. Поскольку было потрачено очень много усилий на развитие процессов с использованием ПАВ и исследования позволили существенно продвинуться в понимании фазового поведения систем масло-вода-ПАВ, ниже кратко обсуждается это проблема.
Главная причина неэффективности заводнения нефтеносного пласта состоит в том, что нефть в результате действия капиллярных сил оказывается запертой в порах и образует отдельные не связанные «ганглии». На рис. 18 показаны два различных механизма капиллярного захвата нефти, а именно, захват нефти в «капкан» в более широкой части поры и процесс шунтирования, вызванный конкуренцией течения по порам. Захват в «капкан» происходит в порах с большим соотношением объема поры и ее сечения. Смачивающая фаза формирует ободок вокруг несмачивающей фазы, которая в конечном итоге разрывается в узких сечениях. Шунтирование вызывается разницей размеров пор. Вязкостные силы заставляют жидкость течь быстрее по более широким каналам, в то время как капиллярные силы лучше всасывают вытесняющую фазу в поры меньшего размера. Таким образом, в условиях, когда течение связано с впитыванием, т. е. при низких скоростях инжектирования и небольшой вязкости вытесняющей среды, нефть захватывается преимущественно большими порами.
Рис. 18. Механизмы захвата нефти в порах: «капкан», шунтирование
Количество нефти, остающейся после заводнения месторождения, зависит от соотношения вязких сил, способствующих вытеснению нефти, и капиллярных сил, захватывающих нефть в порах. Для характеристики соотношения вязких и капиллярных сил используется безразмерная величина — капиллярное число Nc:
где м — вязкость и н — скорость движения вытесняющей жидкости.
Экспериментально установлено, что насыщение пространства пор остаточной нефтью становится постоянным, когда Nc снижается до некоторого значения, лежащего в интервале IO-IO-5. Обычное заводнение характеризуется значениями Nc ниже указанной области. При значениях выше критического остаточное насыщение после заводнения падает практически линейно с увеличением Ig Nc.
Таким образом, путь для достижения хорошей нефтеотдачи заключается в достижении высоких значений Nc. В принципе увеличение Nc можно добиться, во-первых, за счет увеличения вязкостных сил скорости закачки воды), во-вторых, за счет снижения капиллярных сил, в-третьих, путем комбинации обоих факторов. Возможность увеличения вязкостных сил на практике оказывается ограниченной: высокое давление воды приводит к разрушению нефтеносной породы, а большие разрушения снижают эффективность вытеснения. Таким образом, остается одна переменная — межфазное натяжение на границе нефть-вода, которое требуется снизить до очень малых значений. Нетрудно показать, что, по крайней мере для породы, смачиваемой водой, для сообщения нефти подвижности и увеличения нефтеотдачи требуется снижение межфазного натяжения до значений порядка 10-3 мН/м.