Методы совмещения наполнителя со связующим
Применение метода полимеризационного наполнения для введения наполнителей в полипропилен (ПП) привело к созданию новых материалов, обладающих необычным комплексом физических и механических характеристик [8]. Структура ПП, образующегося на поверхности наполнителя, во многом определяется природой наполнителя, условиями приготовления катализатора и проведения процесса. Графит, используемый как наполнитель, позволяет получить ПП с наибольшей степенью изотактичности (до 94-96%).
Исследование электрической проводимости полипропиленграфитовых композиций показало, что полимеризационное наполнение – новый перспективный путь получения тепло- и электропроводящих композиций. Композиты, полученные методом полимеризационного наполнения имеют гораздо большую электрическую проводимость, чем механические смеси ПП и графита. Различия в проводимости особенно существенны (в 107 раз) при низких объёмных концентрациях наполнителя С ≤ 8%. Для получения путём механического смешения композиций с такой же проводимостью необходимо ввести 30% графита, что приводит к снижению прочности при растяжении и сжатии в 1,55 раза композиты на основе ПП и графита обладают высокой однородностью.
Композиты на основе ПП и графита обладают ещё одним замечательным свойством – сохраняют пластичность и механическую прочность после многократных циклов охлаждения и нагревания от 300 до 4,2 К. изучение поверхности прессованных образцов таких норпластов показало, что норпласт (при одинаковых размерах частиц исходного графита) содержит частицы графита меньших размеров, равномерно распределённые в полимерной матрице, чем механические смеси, и расстояние между частицами наполнителя в норпласте значительно меньше.
Композиты на основе ПП и графита перспективны для применения в элементах электронагревательных устройств, покрытиях для экранов радиоэлектронной аппаратуры, тензодатчиках, эксплуатируемых при низких температурах, высокостабильных резистора, антистических покрытиях, электрофильтрах.
По прочностным характеристикам норпласты на основе ПП при степени наполнения 30-40% близки к ненаполненному изотактическому ПП. Наличие атактической фракции ПП в композите (до 10-15%) оказывает пластифицирующее действие и улучшает его деформационные свойства.
Как известно, наилучшими магнитными характеристиками обладают анизотропные магниты, которые получают при переработке композита с максимальной ориентацией частиц наполнителя под действием внешнего магнитного поля. Магнитные свойства определяются степенью наполнения и степенью ориентации частиц в магнитном поле, поэтому для получения высоких параметров необходимо достичь максимальной степени ориентации при максимальном содержании наполнителя. При получении магнитопластов механическим смешением компонентов степень ориентации начинает падать уже при содержании наполнителя 70÷75% масс. Использование метода полимеризационного наполнения позволяет достигнуть равномерного распределения частиц наполнителя (96 масс. %) в полимере, облегчает их ориентацию в магнитном поле, благодаря наличию полимерной оболочки, (степень текстуры составляет более 90%) [35].
Таким образом, метод полимеризационного наполнения позволяет решить одну из важнейших проблем наполненных композиционных материалов – проблему совместимости неорганической и органической фаз. Условия полимеризации обеспечивают покрытие частиц мелкодисперсной или волокнистой природы сплошным полимерным слоем [35].
По технологии полимеризационного наполнения создан новый инженерный пластик – Компонор на основе СВМПЭ высокой плотности и минерального наполнителя каолина. Введение минерального наполнителя улучшает ряд характеристик СВМПЭ и позволяет получать материал с уникальным комплексом свойств (табл. 4, 5).
Таблица 5
Материал |
Содержание каолина, масс. % |
Предел текучести при растяжении, МПа |
Разрушающее напряжение при растяжении, МПа |
Относительное удлинение при разрыве, % |
Модуль упругости при растяжении, МПа |
Удельная ударная вязкость, кДж / м2 |
Коэффициент трения |
Коэффициент изнашивания по стали * 10-6, мм3 / нм |
Коэффициент термического расширения *10-4 град-1 |
Компонор 3-6-3 |
50 |
20 |
32 |
400 |
1900 |
Не разрушается |
0,2-0,25 |
20 |
0,78 |
30 |
18 |
23 |
200 |
2700 |
Не разрушается |
─ |
5 |
─ | |
СВМПЭ |
0 |
24 |
40 |
500 |
900 |
Не разрушается |
0,23-0,24 |
60 |
2,0 |
F-4 |
0 |
10 |
20-30 |
350-400 |
450-600 |
─ |
0,05-0,1 |
260 |
0,8-2 |
Сравнительные характеристики материалов на основе СВМПЭ и каолина (компонор 3-6-3), полученных полимеризационным наполнением, ненаполненного СВМПЭ и фторопласта (F-4)
Композиции Компонора с содержанием каолина 30-50 масс. % обладают высокой износостойкостью ( в 2-10 раз выше по сравнению со СВМПЭ ), высокой ударной прочностью и жёсткостью ( в 2-3 раза выше по сравнению со СВМПЭ ); жёсткость Компонора приближается к жёсткости, характерной для полиамидов, ацетатных смол и других пластиков.
Компонор также обладает высокой радиационной и химической стойкостью по отношению к кислотам, щелочам и многим органическим растворителям. Повышенная влажность не влияет на его свойства. Компонор может использоваться в широком диапазоне температур – от очень низких до 100 0С, отличается повышенными антиадгезионными и антикоррозионными свойствами, пониженными хладотекучестью, ползучестью и коэффициентом трения.