Метод суспензионной полимеризации винилхлорида
г). Антиоксиданты. Известно, что полностью удалить кислород из полимеризационной среды в условиях промышленного процесса не удается. Было установлено, что для связывания остаточного кислорода перед полимеризацией винилхлорида может оказаться полезным введение небольших количеств антиоксидантов. Наибольший эффект получен при использовании ионола (2,6 – ди-трет-бутил-4-метилфенола) в количестве 0,005–0,01% по отношению к мономеру.
д). Регуляторы pH. Для соблюдения постоянного значения pH при полимеризации вводят буферные добавки. В качестве таких добавок используются водорастворимые карбонаты или фосфаты, пирофосфат натрия и др.
е). Регуляторы молекулярного веса. Для снижения температуры полимеризации при получении низковязких марок ПВХ часто используют агенты переноса цепи (регуляторы молекулярного веса). К этой группе добавок относятся хлоруглеводороды, например трихлорэтилен, четыреххлористый углерод, а также меркаптаны и др. В качестве агента переноса цепи используют и изопропилбензол, который одновременно заметно увеличивает термостабильность полимера. Количество вводимого регулятора зависит от его активности, температуры полимеризации и может колебаться от десятых долей процента до 3% и более по отношению к массе мономера.
ж). Сополимеризующиеся добавки. Путем введения в цепь ПВХ редких звеньев второго винилового мономера, содержащего алкильные радикалы (1–10% от веса винилхлорида), достигается так называемая внутренняя пластификация полимера. Расплав такого ПВХ обладает повышенной текучестью, и полимер легче перерабатывается в жестких композициях. При внутренней пластификации полимера достигается большая морозостойкость, увеличивается его ударная стойкость. Для внутренней пластификации ПВХ используются винилалкиловые эфиры с числом атомов в алкильном радикале от 8 до 18, а также эфиры малеиновой, фумаровой, акриловой кислот, сложные эфиры аллилового спирта и др. [3, стр. 66–79]
2.2 Механизм полимеризации винилхлорида
Процесс полимеризации винилхлорида основан на радикальной полимеризации. В качестве активных центров в таких процессах выступают свободные радикалы, получаемых при введении в реакционную смесь инициаторов.
Основные этапы радикальной полимеризации ВХ
I. Инициирование цепи.
Из всех известных способов инициирования полимеризации виниловых мономеров в промышленных процессах полимеризации винилхлорида используется лишь инициирование свободными радикалами, образующимися при распаде некоторых перекисей или азосоединений. Термический распад инициатора протекает по общей схеме: .
Для динитрил азодиизомаслянои кислоты C8N4H12 этот процесс будет выглядеть так:
СН3 СН3 СН3
NC – С–N= N-С–СN 2NC С ∙ + N2
СН3 СН3 СН3
Возникающие свободные радикалы инициируют полимеризацию путем образования с мономером активных центров: .
Скорость инициирования полимеризации определяется не только скоростью распада инициатора, но и эффективностью инициирования. Под эффективностью инициирования f понимают отношение числа радикалов, инициирующих полимеризацию, к общему числу всех образующихся вследствие распада инициатора радикалов.
II. Рост цепи.
На этой стадии происходит увеличение степени полимеризации растущего макрорадикала, а значит и молекулярной массы:
Скорость процесса будет определяться как концентрацией мономера, так и концентрацией инициатора и его активностью:
,
где С – концентрация инициатора, М – концентрация мономера.
III. Обрыв цепи.
Обрыв цепи возможен по различным причинам:
а). при столкновении двух растущих радикалов (реакция рекомбинации):
б). при реакции диспропорционирования:
в). при столкновении со стенкой S сосуда или ингибитором:
г). Передача цепи через мономер:
Особенности процесса суспензионной полимеризации ВХ
Суспензионная полимеризация винилхлорида проводится в присутствии растворимого в мономере инициатора (органическая перекись или азосоединение), воды и защитного коллоида. Механизм диспергирования мономера в водной среде схематически изображен на рис. 3. При перемешивании мономера с водой устанавливается динамическое равновесие между дроблением мономера на капли и обратным процессом их слияния (коалесценция). С введением в среду защитного коллоида на поверхности капли мономера образуется защитный слой, и капля стабилизируется. Молекулы защитного коллоида располагаются на поверхности раздела фаз так, что их гидрофобные части (обычно углеводородная цепь) направлены в сторону мономера, а гидрофильные – в сторону воды. Размеры образующихся капель (дисперсность эмульсии) зависят от интенсивности перемешивания и свойств защитного коллоида.
Поскольку используемый инициатор растворим в мономере и практически нерастворим в воде, полимеризация винилхлорида протекает в капле мономера, защищенной стабилизатором эмульсии.
Добавление воды при полимеризации винилхлорида в массе не оказывает существенного влияния на кинетику процесса. [3, стр. 59–60]
Рис. 3. Механизм диспергирования мономера в водной фазе
2.3 Описание технологической схемы
Суспензионный поливинилхлорид получают по полунепрерывной схеме. В качестве инициаторов применяют растворимые в мономере органические перекиси или азосоединения: динитрил азо-бис-изо-масляной кислоты (порофор), перекись лауроила, пероксидикарбонаты и др. Наиболее эффективными являются смеси инициаторов последовательного действия, в присутствии которых полимеризация протекает с высокой скоростью на протяжении всего процесса. Применение смеси пероксидикарбоната с порофором позволяет не только значительно повысить скорость полимеризации, но и применить более низкие концентрации инициатора, что способствует повышению термостабильности поливинилхлорида.