Металлы и сплавы в химии и технике
Рефераты >> Химия >> Металлы и сплавы в химии и технике

В принципе способ, с помощью которого можно решить такую задачу, ясен - надо пытаться резко увеличить скорость охлаждения жидкого металла, чтобы быстро спуститься в ту область температур, где атомы уже не могут менять своих соседей. Расчеты и эксперименты показали, что подавить процесс кристаллизации действительно удается, но для этого нужны скорости охлаждения порядка миллионов градусов в секунду. Один из разработанных способов заключается в разбрызгивании мелких капель жидкого металла на хорошо отпалированную поверхность быстро вращающегося холодного медного диска. Капля на поверхности диска размазывается очень тонким слоем (несколько микрометров), а хорошая теплопроводность меди обеспечивает высокую скорость теплоотвода.

В настоящее время уже налажен промышленный выпуск десятков сплавов в аморфном состоянии. Оказалось, что легче всего аморфизуются сплавы переходных и благородных металлов с металлоидами (неметаллами, углеродом, бором, фосфором и др.), причем есть сплавы, в которых удается подавить кристаллизацию при скорости охлаждения порядка тысяч и даже сотен градусов в секунду.

Какие же свойства аморфных сплавов особо ценны для техники? Как и ожидалось, аморфные металлы во многих отношениях отличаются от своих кристаллических собратьев. Хотя модули упругости при аморфизации снижаются в среднем на 30% (силы межатомной связи уменьшаются), но прочность и твердость резко возрастают. Отсутствие дислокации приводит к тому, что металлические стекла по прочности превосходят самые лучшие легированные стали. Высокая твердость определяет их великолепную износостойкость. Правда, пластичность аморфных сплавов низкая, что даже можно было ожидать, так как “носителями” пластичности являются дислокации. Все же металлические стекла не так хрупки - как обычное стекло. Их можно, например, прокатывать при комнатной температуре.

Другое важнейшее преимущество аморфных металлических сплавов - их исключительно высокая коррозионная стойкость. Во многих весьма агрессивных средах (морской воде, кислотах) металлические стекла вообще не корродируют. Например, скорость коррозии аморфного сплава, содержащего железо, никель и хром, в растворе соляной кислоты практически равны нулю. Для сравнения можно сказать, что скорость коррозии “классического” коррозионностойкого сплава железа с никелем и хромом (знаменитая нержавеющая сталь, которую так и называют - “нержавейка”) в той же среде превышает 10мм/год. Основная причина такой высокой коррозионной стойкости аморфных сплавов, по-видимому, состоит в том, что, не имея кристаллической решетки, они лишены и характерных “дефектов” кристаллов - дислокации и, главное, границ между зернами. Высокая плотность упаковки атомов в кристалле в близи этих “дефектов” уменьшается столь резко, что вдоль них легко проникают в металл “вражеские агенты”. Важно, что бездефектная структура аморфного сплава передается той тонкой окисной пленке, которая образуется на его поверхности на начальных стадиях коррозионного процесса и в дальнейшем защищает металл от прямого контакта с “агрессором”.

Весьма интересным показалось и сочетание некоторых физических свойств аморфных сплавов, в частности, магнитных и электрических. Выяснилось, что сплавы на основе ферромагнитных металлов (железа, никеля) в аморфном состоянии так же ферромагнитны.

Если вернуться сердечникам трансформаторов то будет видно, что замена обычной трансформаторной стали аморфным сплавом даст огромную экономию энергии. В США подсчитано, что потери на вихревые токи уменьшается при этом в 4 раза. Необычное сочетание магнитных и электрических свойств металлических стекол позволяет с большим эффектом использовать их и для других преобразователей тока, датчиков, сердечников и разного рода реле.

Количество компонентов в сплавах возрастает вместе с требованиями. Уже не редкость сплавы с десятком и более компонентов. Их составление - большое искусство, так как компоненты должны работать в гармонии и согласии. Недаром создателей новых сплавов металлурги называют композиторами.

Изготовить такие композиции в промышленности часто труднее, чем составить. У компонентов разные температуры плавления, химические свойства, плотность. Если при плавке еще удается управлять множеством процессов, используя вакуум или защитные атмосферы, флюсы, разделяя плавку на этапы, то при кристаллизации влиять на ход событий можно только режимом охлаждения. Здесь-то компоненты и проявляют свой характер. Одни упрямо не хотят растворяться в общей массе сплава и выделяются прослойками, другие жадно поглощают все загрязнения и примеси, образуя стойкие и вредные соединения, третьи кристаллизуются в слишком крупные или слишком мелкие зерна, нарушая структурную однородность сплава. И чем больше компонентов, тем больше подобных проблем.

Чтобы избавиться от трудностей, связанных с кристаллизацией, можно изготовить металл из смеси компонентов в виде частиц, гранул или волокон, спрессовав и сварив их в сплошную массу. Так возникла технология композитных металлов, а затем порошковая металлургия. Это была первая попытка начать революцию в металлургии, но она удалась лишь частично.

Порошковая металлургия и композиты занимают хотя и важную, но довольно ограниченную область в выпуске металлических изделий. Это прежде всего производство твердых сплавов для инструмента, затем изготовление изделий из тугоплавких металлов - вольфрама, молибдена и других, плавление которых сопряжено с техническими трудностями, наконец, получение деталей с особой структурой - пористых, волокнистых, чешуйчатых.

Порошковая технология ограничена прежде всего стоимостью продукции, которая пока раз в десять выше, чем продукция, полученная традиционными металлургическими приемами. Кроме того, хотя при спекании происходит диффузия компонентов и протекают некоторые химические реакции, композиты все же обладают свойствами смеси, а не сплава.

Вторая попытка состоялась сравнительно недавно, когда новая наука - физика металлов - обнаружила, что теоретическая прочность металла на полтора-два порядка выше реальной. Оказалось, что низкая прочность металла объясняется дефектами кристаллической решетки. Количество дефектов в металле может быть соизмеримо с числом атомов, поэтому в расчетах используют плотность, или концентрацию дефектов в единице объема. Если эта величина близка к нулю, что соответствует идеальному кристаллу, то прочность такого кристалла близка к теоретической. С повышением концентрации дефектов прочность сначала стремительно снижается, а затем начинает снова возрастать, но значительно медленнее. Минимум обычно соответствует реальной прочности чистого металла. Примеси, легирующие добавки, деформация увеличивают концентрацию дефектов и повышают прочность материала.

Была поставлена задача получить бездефектные и достаточно крупные металлические монокристаллы. Однако она не решена до сих пор. Правда, удалось вырастить тонкие, в несколько десятков микрон, и длиной до полутора сантиметров почти бездефектные кристаллы некоторых металлов. Их прочность действительно оказалась во много раз выше обычной. Из таких “усов” были даже изготовлены высокопрочные композиты. Но дальше лабораторий дело пока не пошло: скорость роста “усов” оказалась слишком низкой, а потому цена - слишком высокой.


Страница: