Кристаллогенезис - возникновение, рост и разрушение кристаллов
Содержание
Введение
Образование кристаллов в природе
Причины и условия образования кристаллов
Механизмы роста кристаллов
Формы роста кристаллов
Дефекты кристаллов
История получения искусственных кристаллов
Список используемой литературы
Введение
Кристаллогенезис – возникновение, рост и разрушение кристаллов
Для понимания процессов, приводящих к зарождению и росту кристаллов, необходимы знания из области физики, химии, кристаллографии и других ветвей науки.
Однако подход к изучению кристаллов у разных специалистов разный: физиков кристаллы интересуют как материал, используемый в технике и обладающий интересными физическими свойствами; минерологи же на основе изучения тех или иных особенностей кристаллов пытаются выяснить историю их зарождения, роста и последующих превращений – определить температуру, давление и состав среды, в которой кристаллы зарождались и росли, т.е. определить последовательность тех физико-химических процессов, которые привели к образованию кристалла.
Образование кристаллов в природе
В природе кристаллы образуются при различных геологических процессах из растворов, расплавов, газовой или твердой фазы.
Значительная часть минеральных видов произошла путем кристаллизации из водных растворов. Примеры выпадения кристаллов из раствора – выпадение кристаллов солей в замкнутых водоемах; рост кристаллов на стенках трещин и полостей при гидротермальных процессах, на больших глубинах в условиях высоких давлений и температур; образование отдельных кристаллов вторичных минералов в зонах окисления рудных месторождений.
Образование кристаллов из расплавов. Если магматический очаг располагается на большой глубине и его остывание идет медленно, то магма успевает хорошо раскристаллизоваться и кристаллы вырастают достаточно крупными и хорошо ограненными. Если магма застывает внезапно, могут образоваться некристаллические минералы и горные породы. Внезапное застывание магмы происходит при извержении вулканов. Потоки застывшей лавы дает начало не кристаллическим, а стекловидным породам.
Образование кристаллов в результате конденсации газов или из паров. Кристаллизоваться могут не только водяные пары, но и пары других веществ. Пример- на фумаролах образуются кристаллы из газов.
Образование кристаллов при перекристаллизации твердых веществ. При переходе из твердого состояния в твердое выделяют 2 случая:
1. Кристаллическое вещество образуется из аморфного–например, с течением времени закристаллизовываются содержащие стекла кристаллические породы.
2. Перекристаллизация – это процесс, при котором структура одних веществ разрушается, и образуются новые кристаллы с другой структурой. Например, известняк под действием высоких температур и давления становится мрамором. Перекристаллизация связана с таким явлением как метосамотоз – преобразование горной породы или минерала в другую горную породу или минерал под воздействием привноса или выноса вещества.
Причины и условия образования кристаллов
Материальные частицы (атомы, молекулы, ионы), слагающие газообразные или жидкие (расплавленные) вещества, обладая высокой кинетической энергией, находятся в непрерывном движении. Время от времени они сталкиваются, образуя зародыши – микроскопические фрагменты будущей структуры. Чаще всего такие зародыши распадаются, что связано либо с собственными колебаниями, либо с бомбардировкой их свободными частицами. Однако для начала кристаллизации необходимо, чтобы зародыш достиг критической величины, т.е. содержал такое количество частиц, при котором присоединение следующей частицы сделало бы разрастание зародыша энергетически более выгодным, чем его распад. Такая возможность для большинства веществ проявляется либо с понижением температуры, в результате чего уменьшаются температурные колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, то есть к возникновению зародышей.
Таким образом, рост кристаллов можно рассматривать как процесс, посредством которого мельчайшие кристаллические частицы – зародыши – достигают макроскопических размеров. Причем кристаллизация протекает не во всем объеме, а лишь там, где возникнут зародыши. Факторами, влияющими на появление зародышей, являются не только переохлаждение и повышение концентрации раствора или вязкости расплава, но и присутствие посторонних обломков кристаллов или пылинок, на поверхности которых собираются частицы, упрощая этим начало кристаллизации.
Процесс кристаллизации является энергетически выгодным. Растущий кристалл не принимает равновесную форму вследствие того, что на него влияют различные изменяющиеся условия кристаллизации: температура, давление, сила тяжести, химический состав и динамика среды и т.д.
Механизмы роста кристаллов
Существенный вклад в решение вопросов о механизме роста кристаллов внесли разработанные теории роста идеальных кристаллов.
В конце XIX в. американским физиком Дж. Гиббсом (1839-1903), французским физиком П. Кюри и русским кристаллографом Г.В. Вульфом на термодинамической основе была разработана количественная теория зарождения и роста кристаллов. Несколько позже, в 20-х гг. XX в., немецким физиком М. Фольмером (1885-1965) была выдвинута теория самопроизвольного зарождения кристаллов и их роста.
Вслед за термодинамическим учением Гиббса в 1927 году наибольшее признание получили теоретические работы немецкого физико-химика В.Косселя (1888 – 1956) и болгарского физика И.Н. Странского (1897 - 1979), положившие начало молекулярно-кинетической теории роста кристаллов. Они рассмотрели рост идеального кристалла при незначительном перенасыщении без учета несовершенств реальных кристаллов и влияния среды кристаллизации. Эта теория объяснила явление послойного роста кристаллов с позиций атомно-молекулярного состояния поверхности растущего кристалла, опираясь на энергетическую выгодность присоединения отдельных частиц вещества в различные позиции на свободной от дефектов поверхности кристаллов.
В процессе роста возникают либо атомно-гладкие, либо атомно-шероховатые грани. Атомно-гладкие грани растут путем послойного отложения вещества, т.е. тангенциального перемещения ступеней, и остаются в процессе роста макроскопически плоскими. Такой рост называется тангенциальным или послойным. При этом скорость роста разных граней будет различна. В итоге кристаллы будут расти в идее многогранника.
Кристаллы с атомно-шероховатыми гранями могут присоединять частицы с макроскопической точки зрения практически в любой точке поверхности. Поэтому поверхность грани в процессе роста перемещается по нормали к самой себе в каждой своей точке. Такой рост называется нормальным. При этом скорости роста граней кристалла в разных направлениях будут примерно одинаковы и кристаллы приобретут округлые формы изотерм кристаллизации. Исследование морфологии кристаллов дает информацию об атомных процессах, происходящих на поверхности растущего кристалла.