Кремний
Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si—O, равная 464 кдж/моль (111 ккал/моль), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si—Si мала, 176 кдж/моль (42 ккал/моль); в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись SiO2. Известна также моноокись SiO, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь Si и SiO2. К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами — при нагревании с образованием соединений общей формулы SiX4 (см. Кремния галогениды). Водород непосредственно не реагирует с К., и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (кремния карбид SiC) и с бором (SiB3, SiB6, SiB12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с CH3Cl) с образованием органогалосиланов [например, Si (CH3)3CI], служащих для синтеза многочисленных кремнийорганических соединений.
Получение.
Наиболее простым и удобным лабораторным способом получения кремния является восстановление оксида кремния SiO2 при высоких температурах металлами-востановителями. Вследствие устойчивости оксида кремния для восстановления применяют такие активные восстановители, как магний и алюминий:
3SiO2 + 4Al = 3Si + 2Al2O3
При восстановлении металлическим алюминием получают кристаллический кремний. Способ восстановления металлов из их оксидов металлическим алюминием открыл русский физикохимик НН Бекетов в 1865 году. При восстановлении оксида кремния алюминием выделяющейся теплоты не хватает для расплавления продуктов реакции – кремния и оксида алюминия, который плавится при 2050 С. Для снижения температуры плавления продуктов реакции в реакционную смесь добавляют серу и избыто алюминия. При реакции образуется легкоплавкий сульфид алюминия:
2Al + 3S = Al2S3
Капли расплавленного кремния опускаются на дно тигля.
К. технической чистоты (95—98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами.
SiO2+2C=Si+2CO
В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.
Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением SiCI4 или SiHCl3 цинком или водородом, термическим разложением Sil4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. — метод Чохральского).
Путём хлорирования технического кремния получают тетрахлорид кремния. Старейшим методом разложения тетрахлорида кремния является метод выдающегося русского химика академика Н.Н.Бекетова. Метод этот можно представить уравнением:
SiCl4+Zn=Si+2ZnCl2.
Здесь пары тетрахлорида кремния, кипящего при температуре 57,6°C, взаимодействуют с парами цинка.
В настоящее время тетрахлорид кремния восстанавливают водородом. Реакция протекает по уравнению:
SiCl4+2Н2=Si+4НCl.
Кремний получается в порошкообразном виде. Применяют и йодидный способ получения кремния, аналогичный описанному ранее йодидному методу получения чистого титана.
Чтобы получить чистыми кремний, его очищают от примесей зонной плавкой аналогично тому, как получают чистый титан.
Для целого ряда полупроводниковых приборов предпочтительны полупроводниковые материалы, получаемые в виде монокристаллов, так как в поликристаллическом материале имеют место неконтролируемые изменения электрических свойств.
При вращении монокристаллов пользуются методом Чохральского, заключающимся в следующем: в расплавленный материал опускают стержень, на конце которого имеется кристалл данного материала; он служит зародышем будущего монокристалла. Стержень вытягивают из расплава с небольшой скоростью до 1-2 мм/мин. В результате постепенно выращивают монокристалл нужного размера. Из него вырезают пластинки, используемые в полупроводниковых приборах.
Применение.
Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды — тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике (см. также Кварц).
К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.
Силицирование, поверхностное или объёмное насыщение материала кремнием. Производится обработкой материала в парах кремния, образующихся при высокой температуре над кремниевой засыпкой, или в газовой среде, содержащей хлорсиланы, восстанавливающиеся водородом (например, по реакции SiCI4 + 2H2 = Si + 4HC1). Применяется преимущественно как средство защиты тугоплавких металлов (W, Mo, Ta, Ti и др.) от окисления. Стойкость к окислению обусловливается образованием при С. плотных диффузионных «самозалечивающихся» силицидных покрытий (WSi2, MoSi2 и др.). Широкое применение находит силицированный графит.