Классы неорганических веществ. Растворы электролитов. Размеры атомов и водородная связь
4. Энтальпия
Энтальпиия, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.
Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня с грузом Р = p S, уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной.
Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом
Eпот = pSx = pV
H = E = U + pV
Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H — аналогично внутренней энергии — имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния
ΔH = H2 − H1
Энтальпией системы удобно пользоваться в тех случаях, когда в качестве независимых переменных, определяющих состояние системы, выбирают давление р и температуру Т
H = H(p,T)
Энтальпия — величина аддитивная, т. е. для сложной системы равна сумме энтальпий её независимых частей
.
Энтальпия определяется с точностью до постоянного слагаемого, которому в термодинамике часто придают произвольные значения (например, при расчете и построении тепловых диаграмм). При наличии немеханических сил величина энтальпии системы равна
где Xi — обобщённая сила; yi — обобщённая координата.
Изменение энтальпии не зависит от пути процесса, так как изменение объёма при постоянном давлении определяется только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра равно нулю, а отсюда ΔU = 0 и ΔH = 0.
5. Растворы электролитов. Понятие об электролитической диссоциации
Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.
Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить по их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы.
Электролитическая диссоциация. Кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств, шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.
Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов — катионов и анионов.
Процесс диссоциации во всех случаях является обратимым, поэтому при написании уравнений реакции диссоциации необходимо применять знак обратимости. Различные электролиты, согласно теории Аррениуса, диссоциируют на ионы в различной степени. Полнота распада зависит от природы электролита, его концентрации, природы растворителя, температуры. Степень диссоциации. Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации. Степенью диссоциации а называется отношение числа молекул, распавшихся на ионы (n'), к общему числу растворенных молекул (n):
Из этого выражения очевидно, что а может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.
6. Мембранные сенсоры и биосенсоры
Электрохимические сенсоры и биосенсоры, устройства, в которых аналитический сигнал обеспечивается протеканием электрохимического процесса. Предназначены для качественного и количественного анализа химических соединений в жидких и газообразных средах. По сравнению с обычными аналитическими приборами отличаются портативностью, простотой конструкции, относительно низкой стоимостью. Электрохимические сенсоры составляют наиболее разработанную и широко используемую группу среди устройств, в которых аналитический сигнал обусловлен химическим взаимодействием в анализируемой среде. Различают потенциометрические, амперометрические, кондуктометрические, импедансометрические электрохимические сенсоры. Аналитическими сигналами служат, соотв.: потенциал индикаторного электрода (при нулевом токе через электрохимическую ячейку); ток, протекающий через ячейку при заданном значении электродного потенциала; электропроводность раствора электролита; электрохимический импеданс системы, представляющий собой электрический эквивалент определенного сочетания сопротивлений и емкостей в электрохимической цепи.
Электрохимические сенсоры используют главным образом для определения реакционноспособных (электроактивных) веществ, способных электрохимически восстанавливаться или окисляться на индикаторном электроде миниатюрной электрохимической ячейки, которая генерирует аналитический сигнал. В качестве индикаторных электродов служат инертные электроды (Pt, Pd, Au, Ag), химически активные (Сu, In, Sn) или модифицированные комплексные соединения, а также ионселективные электроды. Электролиты могут быть жидкими (растворы КС1, H2SO4, буферные растворы), твердыми (ZrO2, А12О3, Sb2O5 * nH2O), загущенными; применяют также полиэлектролиты.
В современных электрохимических сенсорах чувствительный элемент (трансдьюсер) по своей сути представляет гальванический элемент, предложенный Л. Кларком (1953), в котором два электрода и раствор электролита отделены от анализируемой среды полупроницаемой мембраной.