Квантово-химические правила отбора элементарных стадий
Поэтому реакция с акцептором пойдет через атом S
(33)
Если орбиталь акцептора лежит высоко и Е1 – Е2 велика, реакция контролируется зарядовым взаимодействием. В этом случае, первый (кулоновский) член в уравнении (32) будет больше для того центра нуклеофила, у которого выше qi. Для расчета qS и qN необходимо учесть коэффициент при этих центрах на всех орбиталях, т.е. кроме y2 нужно учесть и НЗМО y1
y1 = 0.33jS + 0.59jC + 0.74jN
qi рассчитывается по уравнению
qS = 1 – 2(0.332 + 0.742) = – 0.313
qN = 1 – 2(0.592 + 0.742) = – 0.7914
т.е. в анионе на атоме N эффективный отрицательный заряд выше |qN| > |qS| (заряд на атоме С, qС » 0.1). Таким образом, в условиях кулоновского контроля нуклеофил SCN– будет взаимодействовать с акцептором атомом азота
(34)
МВМО дал теоретическое объяснение ряду эмпирических правил и обобщений. В 1958 г Арланд, Чатт и Дэвис предложили классификацию комплексов металлов, разделив их на две группы (а) и (б). К группе (а) были отнесены ионы металлов (в наиболее распространенных степенях окисления), которые образуют наиболее устойчивые комплексы с лигандами, имеющими донорные атомы N, O, F. К группе (б) они отнесли ионы, образующие наиболее стабильные комплексы с лигандами, содержащими донорные атомы элементов третьего и последующих периодов (P, S, Cl, Br, J). Так, например, устойчивость галогенидных комплексов Zn2+ (группа (а)) и Hg2+ (группа (б)) меняется в следующих рядах:
Zn2+ F– >> Cl– > Br– > I–
Hg2+ I– > Br– > Cl– >> F–
При переходе к Hg2+ происходит обращение ряда устойчивости по сравнению с “обычным” рядом (Zn2+), согласующимся с простыми электростатическими представлениями.
Очевидно, что в случае первой группы ионов определяющим является зарядовый, а в случае второй группы ионов – орбитальный фактор. Аналогичные объяснения получили правило взаимодействия жестких и мягких кислот и оснований (Пирсон, 1963) и правило Корнблюма.
В терминах теории Пирсона взаимодействие жестких частиц (кислот и оснований, акцепторов и доноров) соответствует зарядовому контролю, взаимодействие мягких частиц – орбитальному контролю. Степень жесткости и мягкости акцептора (A) и донора (D) можно оценивать по различным критериям. Приведем величины орбитальных электроотрицательностей En(A) Em(D) (в эВ) по Клопману:
Акцепторы: (кислоты) |
Al3+ |
Mg2+ |
Cr3+ |
Fe2+ |
H+ |
Na+ |
Cu2+ |
Zn2+ |
Cu+ |
Hg2+ | ||||||
6 |
2.42 |
2.06 |
0.69 |
0.42 |
0.0 |
-0.55 |
-1.0 |
-2.3 |
-4.6 | |||||||
Доноры: (основания) |
F– |
H2O |
OH– |
Br– |
CN– |
SH– |
I– |
H– | ||||||||
-12.18 |
-10.7 |
-10.45 |
-9.2 |
-8.78 |
-8.59 |
-8.31 |
-7.37 | |||||||||
В приведенной таблице самая жесткая кислота – Al3+, самое жесткое основание – F–. Самая мягкая кислота – Hg2+, самое мягкое основание – H–.
Орбитальная симметрия и правила отбора
Общие правила отбора ЭС по симметрии МО в реагирующей системе с циклическим многоцентровым переходным состоянием сформулировали Р.Вудворд и Р.Хоффман – правила сохранения орбитальной симметрии в ходе согласованных реакций.
Если заполненные связывающие МО реагентов коррелируют по симметрии (имеют одинаковую симметрию) с заполненными связывающими МО продуктов реакции, такая реакция будет идти согласованно термически (как ЭС). В ходе такой реакции симметрия взаимодействующих орбиталей сохраняется вдоль координаты реакции по ППЭ. Если такой корреляции нет, согласованная реакция пойдет только фотохимически.
В простых молекулах анализ симметрии граничных орбиталей позволяет сделать заключение о возможности согласованной ЭС. Например, симметрии занятой s-МО молекулы Н2 и свободной s*-МО молекулы I2 не позволяют реализоваться циклическому переходному состоянию
Это же касается и разрыхляющей s*-МО H2 и высшей занятой s-МО I2. Граничные ВЗМО и НСМО двух молекул этилена имеют разную симметрию и не могут образовать 4-членного переходного состояния при протекании ЭС
Занятая p-МО одной молекулы этилена