Исследование расщепления крахмала под действием a-амилазы слюны
Рефераты >> Химия >> Исследование расщепления крахмала под действием a-амилазы слюны

Рис.1 А – амилоза; Б – амилопектин; В – гликоген; каждый кружок обозначает остаток глюкозы; Г – современная гроздевидная модель молекулы амилопектина (а – компактная, псевдокристалическая область, б – менее компактная аморфная область; точкой обозначена редуцирующая группа); Д – модернизированная модель молекулы гликогена, демонстрирующая наличие спрятанных полигликозидных цепей; Е - строение частичкового гликогена; центральная линия – полипептидная цепь, к которой через остатки фосфата присоединены субъединицы гликогена.

3.2. Общие понятия о ферментах

Важнейшим свойством ряда белков является их каталитическая активность. Вещества белковой природы, способные каталитически ускорять химические реакции, называют ферментами (от лат. Fermentum – закваска) или энзимами (от греч. ен – внутри, зим – закваска). Как вытекает из происхождения названий этих веществ, первые сведения об их существовании были получены при изучении процессов брожения.

Роль ферментов в жизнедеятельности животных, растений и микроорганизмов колоссальна. Благодаря каталитической функции разнообразные ферменты обеспечивают быстрое протекание в организме или вне его огромного числа химических реакций. Складываясь в единый ансамбль саморегулируемых биохимических процессов, эти реакции преобразования веществ составляют материальную и энергетическую основу непрерывного самообновления белковых тел, т.е. самой сущности жизненных явлений. Поэтому ферменты «есть возбудители всех химических превращений». (И.П. Павлов)

В настоящее время в биологических объектах обнаружено несколько тысяч индивидуальных ферментов, а несколько сотен из них выделено и изучено. Подсчитано, что живая клетка может содержать до 1000 различных ферментов, каждый из которых ускоряет ту или иную химическую реакцию.

Биологические катализаторы (ферменты) по ряду признаков резко отличаются от неорганических катализаторов, хотя и те и другие лишь ускоряют достижение равновесия в химических процессах, которые протекают сами по себе, но сочень малыми скоростями. Как и катализаторы неорганической природы, биокатализаторы не вызывают каких либо химических реакций, а лишь ускоряют существующие. Первое различие состоит в том, что по сравнению с катализаторами неорганической природы ферменты «работают» в очень мягких условиях (низкая температура, нормальное давление, невысокие значения pH среды) и очень интенсивно. Так, например, гидролитический распад белка до аминокислот в присутствии неорганических катализаторов(крепких кислот и щелочей) осуществляется при температуре 100ºС и выше за несколько десятков часов. Этот же процесс при каталитическом участии специфических ферментов требует всего несколько десятков минут и идёт при температуре 30-40ºС. Для гидролиза крахмала, как указывал ещё Й. Берцелиус (1836), при нагревании в растворе кислоты нужно несколько часов, а при участии соответствующего фермента этот процесс идёт при комнатной температуре и занимает всего несколько минут. Ионы Fe каталитически ускоряют разложение H2O2 на Н2О и О2. Однако атомы того же Fe, но в составе фермента каталазы действуетв 10 млрд. раз энергичнее, и всего 1 мг Fe в ферменте способен заменить в этой реакции 10 т неорганического Fe. Таким образом, исключительно высокая каталитическая активность, проявляемая в условиях нормальной температуры и давления, отличает биокатализаторы от неорганических катализаторов.

Второе различие заключается в том, что ферменты обладают необыкновенно высокой специфичностью действия, чего не наблюдается у катализаторов неорганической природы. Каждый фермент каталитически ускоряет, как правило, одну-единственную химическую реакцию или в крайнем случае группу реакций одного типа.

Наконец, ряд различий между биокатализаторами и неорганическими катализаторами связан с белковой природой ферментов. Сюда относится термолабильность, зависимость активности от pH и наличие активаторов или ингибиторов и др.

Самая существенная разница между ферментами и обычными катализаторами вскрыта лишь в последние годы. Она состоит в том, что благодаря уникальной структуре каждого фермента процесс ферментативного катализа представляет перед нами как серия элементарных превращений вещества, строжайшим образом организованным в пространстве и во времени. Кооперативность и жёсткая запрограммированость действия – вот что отличает механизм биокатализа от действия катализаторов иной природы, хотя это не исключает некоторой степени вариабельности как структуры самого фермента, так и строения промежуточных продуктов в процессе ферментативного катализа.

В природе под каталитическим воздействием ферментов осуществляются процессы гидролиза, фосфоролиза, переноса различных групп (метильные радикалы, остатки фосфорной кислоты и т.д.) окисления и восстановления, расщепления и синтеза, изомеризации и т.п. Практически все химические преобразования в живом веществе протекают с помощью ферментов. Естественно поэтому, что каталитическая функция ферментов лежит в основе жизнедеятельности любого организма. При посредстве ферментов реализуется влияние как внутренних, генетических, так и внешних, природных факторов на развитие организма. Благодаря контакту ферментов с лекарственными веществами и антибиотиками достигается такое изменение ферментативных процессов, которые способствуют излечению от болезней, в то же времяизменение ферментативной активностипод влиянием микробных токсинов и иных ядов ведёт к гибели организма. Стимуляция роста животных и растений разнообразными препаратами, применяемые в сельском хозяйстве, в большинстве случаев основана на их воздействии, на процесс биосинтеза или активность тех или иных ферментов. Тончайшие различия строения ряда ферментов определяют видовые особенности организмов, а в нарушении биосинтеза некоторых из них заложена причина возникновения наследственных и других заболеваний. Всё это свидетельствует об огромном значении ферментов для биологии, сельского хозяйства и медицины.

Будучи выделены из организма, ферменты не утрачивают способность осуществлять каталитическую функцию. На этом основано их практическое применение в химической, пищевой, лёгкой и фармацевтической промышленности. Особое значение для химического производства имеет специфичность ферментов: ведь до 80% затрат в производстве многих химических веществ приходится на отделение примесей, возникающих в результате побочных реакций. Проведение синтеза при посредстве высокоспецифичного фермента, ускоряющего только ту реакцию, которая ведёт к образованию нужного продукта, упрощает технологический процесс. Кроме того, ферменты позволяют осуществлять ряд процессов, выполнение которых обычными методами органического синтеза остаётся пока нерешённой проблемой. Так обстоит дело, например, при получении лекарственных препаратов путём ферментативной трансформации стероидов.

3.3. Характеристика амилаз

Использование амилаз человеком было известно с незапамятных времён. Однако их изучение началось с открытия Кирхгофом в 1814 г. Вещества способного превращать крахмал в сахар. Препарат, полученный Кирхгофом из пшеничной муки, обладал способностью разжижать крахмальный клейстер и превращать его в сахарный сироп. Аналогичное явление автор наблюдал при смешивании крахмального клейстера с ячменным солодом. Уже в этих первых исследованиях Кирхгоф отметил губительное действие на это вещество серной кислоты. В то же время он подчеркнул, что сахарообразование является необходимым условием для сбраживания крахмалосодержащих материалов, и таким образом положил начало научному объяснению технологии брожения.


Страница: