Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах
В пользу электронного механизма проводимости говорят следующие факты: отражение электромагнитных волн от фронта детонации [32], непрозрачность для видимого света продуктов детонации исследованных взрывчатых веществ, практически независимость электропроводности от величины напряженности электрического поля [33], сравнительно низкая (105-106 В/см) электрическая прочность продуктов детонации [34,35], эмиссия электронов из фронта детонации [36]. Кроме того, гипотеза электронного механизма проводимости позволяет непротиворечиво объяснить поведение электропроводности и её величину в равновесных продуктах детонации.
3.2 Электропроводность в равновесных продуктах детонации
Будем считать твёрдо установленным фактом существование в нормальных детонационных волнах двух зон электропроводности [9,10]: зоны высокой электропроводности, связанной с химической реакцией, и низкой - в равновесных продуктах детонации. Поскольку зона высокой электропроводности связана с существенно неравновесной областью в детонационной волне, мы остановимся на электропроводности в равновесных продуктах детонации.
Предполагая электронный механизм проводимости для объяснения экспериментальных результатов необходимо рассмотреть природу возникновения электронов, их концентрацию и длину свободного пробега. Иными словами необходимо объяснить величину s в равновесных продуктах детонации порядка 0,1-1 Ом-1см-1 и её экспоненциальный спад в продуктах детонации тротила.
Продукты детонации являются сложным объектом для исследования, поэтому автор отдает себе отчёт, что приводимое ниже рассмотрение носит оценочный характер.
Концентрация электронов в плотных газах обычно находят с помощью изменённой формулы Саха [19,31,37]. Изменение заключается во введении эффективного потенциала ионизации Ieff. Значительное взаимодействие молекул продуктов детонации облегчает ионизацию, иными словами уменьшает потенциал ионизации.
Оценим концентрацию атомов и молекул в продуктах детонации и характерные размеры. Для оценок будем считать плотность равновесных продуктов детонации в плоскости Чепмена-Жуге равной ρ0 = 2 г/см3. Число атомов в единице объёма будет равно
, (5)
где μ – молекулярный вес молекул исходного взрывчатого вещества, N0– число Авогадро, ν – число атомов в исходной молекуле. Для всех рассмотренных взрывчатых веществ: тротила, октогена, гексогена, тэна - получаем na = 1,1·1023 см-3. Среднее расстояние между атомами a = (na)-1/3 ≈ 2·10-8 см. Размеры атомов, входящих в молекулы взрывчатых веществ (C, O, N, H) лежат в пределах (1-1,6)·10-8 см. Совпадение межатомных расстояний с характерными размерами атомов свидетельствуют о том, что энергия взаимодействия атома с атомами в молекуле имеет близкую величину, что и энергия взаимодействия атома с атомами соседних молекул. Именно это взаимодействие и облегчает ионизацию.
Если считать молекулы равновесных продуктов детонации 3х атомными, тогда их число в единице объёма будет nm = na/3 = 3,4 ·1022 см-3. Среднее межмолекулярное расстояние am= (nm)-1/3 ≈ 3·10-8 см, совпадает с характерными размерами самих молекул.
Уравнение состояния продуктов детонации для оценок возьмём в виде
[38], (6)
где Е – внутренняя энергия единицы объёма продуктов детонации, P – давление, γ – показатель изоэнтропы. По данным [3] при ρ0 = 2 г/см3 давление в плоскости Чепмена-Жуге составляет примерно 300 кбар. Энергия W, приходящаяся на одну молекулу, будет
, (7)
и при γ = 3 получим W ≈ 5 эВ. Поскольку тепловая энергия порядка kT = 0,3 эВ ( Т = 3,5 ·105 К ) и кинетическая энергия как целого ρ0u2/2nm ≈ 0,5 эВ значительно меньше полной энергии молекулы W следует ожидать, что на близкую величину изменится энергия или потенциал ионизации.
Другая оценка снижения потенциала ионизации [31,37] может быть получена следующим образом. Молекула в условиях плотноупакованных продуктов детонации может считаться ионизованной, если электрон удалился от неё на am. Тогда снижение потенциала ионизации по абсолютной величине будет равно работе сил электрического поля при переносе электрона от am на бесконечность. Эта работа будет ΔI = e2/am = 5 эВ. По крайней мере, полученная величина снижения потенциала ионизации свидетельствует о решающей роли плотности продуктов детонации во влиянии на ионизацию, а, следовательно, и на концентрацию электронов (металлизация). Учёт диэлектрической постоянной ε порядка двойки уменьшает ΔI. Для оценок концентрации электронов будем считать ΔI = 5 эВ.
Потенциал ионизации свободных молекул, из которых состоят продукты детонации, I = (12-15) эВ. Эффективный потенциал ионизации будет Ieff = (7-10) эВ. Для указанного Ieff формула Саха
(8)
даёт концентрацию электронов n, лежащую в пределах 1017 см-3 ³ n ³ 1014 см-3. Эти значения концентрации для равновесных продуктов детонации взрывчатых веществ типа октогена, гексогена, тэна. В продуктах детонации тротила концентрации будут несколько другими.
Тротил отличается от рассмотренных веществ повышенным содержанием свободного, химически не связанного углерода, конденсирующегося в углеродные частицы, в том числе и в частицы ультрадисперсного алмаза. Мы считаем, что конденсация углерода происходит не «мгновенно» [22] в зоне химической реакции, а продолжается в невозмущённых продуктах детонации и при разлёте. Об этом свидетельствуют результаты экспериментов по малоугловому рентгеновскому рассеянию в детонационной волне в тротиле [39,40] и по нашим представлениям о поведении электропроводности в детонационной волне.
Каждая молекула тротила имеет 7 атомов углерода. В продуктах детонации их концентрация будет nС = 7ρ0N0/μ. Согласно [41] конденсированный углерод составляет практически 20% от веса заряда, что соответствует концентрации химически не связанных свободных атомов углерода ≈ 2·1022 см-3.
Изолированный атом углерода имеет потенциал ионизации I = 11,25 эВ. Эффективный потенциал ионизации будем считать Ieff= (6–7) эВ. Формула Саха дает оценку плотности электронов в продуктах детонации тротила 1017 см-3 ³ n ³ 1016 см-3.
Для оценок температуру в плоскости Чепмена – Жуге будем считать
Т = 3,5·103 К. При максимальной плотности электронов n = 1017 см-3 температура их вырождения [19] T* = 4,35·1011·n2/3 = 10 К << T. Электронный газ не вырожден и подчиняется статистике Больцмана. Тепловая скорость электронов v = 4·107 см/с. Этой скорости соответствует длина волны электрона λ = h/p = 2 ·10-7 см ( h – постоянная Планка, p = mv – импульс электрона ). Длина волны электрона на порядок превосходит размер частиц и межчастичные расстояния. В силу этого взаимодействие электронов с молекулами продуктов детонации будет носить существенно квантовый характер. Рассмотрение [31] упругого рассеяния электронов на молекулах с сечением равным газокинетическому ≈ 10-15 см2 неправомерно.