Ионообменные смолы
Ионообменные смолы (катиониты) – высокомолекулярные полимерные соединения трехмерной гелевой и макропористой структуры, содержащие функциональные группы кислотного характера, способные к реакциям катионного обмена.
Ионообменные смолы делят на катионообменные, анионообменные и амфотерные (или биполярные).
Катионообменные смолы бывают как сильно-, так и слабокислотные.
Анионообменные - сильно- и слабоосновные, а так же промежуточной и смешанной основности.
Сильнокислотные катиониты- это катиониты, обменивающие катионы в растворах при любых значениях pH, слабокислотные - способные к обмену катионов в щелочных средах при pH>7.
Сильноосновные аниониты - аниониты, способные к обмену анионов любой степени диссоциации в растворах при любых значениях pH; слабоосновные - аниониты, способные к обмену анионов из растворов кислот при pH 1-6.
Поскольку природная вода является многокомпонентной структурой - важно правильно организовать водоподготовку и выбрать нужный химреагент.
Ионообменные смолы можно рассматривать, в принципе, как нерастворимые полиэлектролиты. Поливалентный, т.е. многозарядный, ион, образующий структурный каркас ионнообменной смолы, практически неподвижен из-за своей огромной молекулярной массы. Этот ион-каркас связывает малые подвижные ионы противоположного знака, которые способны к эквивалентному обмену на ионы окружающего раствора.
Иониты представлены анионитами - материалами, способными к обмену анионов, и катионитами - материалами, обменивающими катионы.
Таблица 1. - Физико – хим. свойства
Характеристика ионообменной смолы |
Состав | |||
катиониты |
аниониты | |||
структура | ||||
г |
мп |
г |
мп | |
Механическая прочность, г/зерно |
700 |
1200 |
400 |
1200 |
По перепаду давления на слое, кПа |
150-200 | |||
Осмотическая стабильность, % |
95 |
99 |
95 |
99 |
г – гель
мп - макропористая структура
В таблице приводятся типичные значения показателей механической прочности и осмотической стабильности обычной ионообменной смолы.
Так как ионообменные смолы представляют собой нерастворимые высокомолекулярные соединения с функциональными ионогенными группами, то они способны вступать в реакции обмена с ионами раствора. Некоторые типы ионитов обладают способностью вступать в реакции комплексообразования, окисления-восстановления, а также способностью к физической сорбции ряда соединений.
Иониты имеют гелевую, макропористую и промежуточную структуру.
Ионообменные смолы обладают более высокой активностью, механической прочностью, химической устойчивостью, чем природные и искусственные алюмосиликаты и сульфоугли.
Производство ионообменных смол
Получают ионнообменные смолы полимеризацией, поликонденсацией или путём полимераналогичных превращений (т.е. называемой химической обработкой полимера, не обладавшего до этого свойствами ионита).
Как правило, иониты выпускаются в солевых (натриевая, хлористая) или смешанно-солевых формах (натрий-водородная, гидроксильно-хлоридная). Кроме того, выпускаются иониты, практически полностью переведенные в рабочую форму (водородную, гидроксильную и др.). Эти материалы используются в пищевой, фармацевтической, медицинской промышленности и для глубокой очистки конденсата на атомных электростанциях. Выпускаются также готовые смеси ионитов для использования в фильтрах смешанного действия.
Так же существует получение ионообменных смол с однородным
гранулометрическим составом зерен (с монодисперсным распределением зерен ионообменной смолы по размерам), полученным по особой технологии производства, а не методами тривиального рассева.
Такая технология синтезаионнообменных смол позволяет:
получить зерна с любым средним медианным размером в диапазоне от 300 до 1000 мкм;
лимитировать максимальное отклонение диаметра ионообменной смолы от среднего медианного размера для 95 % общего числа зерен в любой выборке пределами от -30 до +30 мкм;
исключить присутствие разрушенных и треснувших зерен в синтезированной ионообменной смоле ;
обеспечить близкие к абсолютно возможным гомогенность структуры и изомерность свойств зерна ионнообменной смолы;
значительно повысить механическую прочность зерен, определяемую тестами на раздавливание и истирание;
существенно улучшить осмотическую стабильность зерен ионнообменной смолы
повысить химическую стойкость (устойчивость ее к окислению);
повысить устойчивость ионообменной смолы к отравлению органикой и другими веществами.
Применение
Ионнообменные смолы используют для умягчения и обессоливания воды в теплоэнергетике и других отраслях, для разделения и выделения цветных и редких металлов в гидрометаллургии, при очистке возвратных и сточных вод, для регенерации отходов гальванотехники и металлообработки, для разделения и очистки различных веществ в химической промышленности, используются в качестве катализатора для органического синтеза. Ионнообменные смолы используются в котельных, теплоэлектростанциях, атомных станциях, пищевой промышленности, фармацевтической промышленности и других отраслях.
Среди промышленных смол широкое распространение получили смолы на основе сополимеров стирола и дивинилбензола. В их числе сильнокислотные катионы(например, КУ-2-8), сильно- и слабоосновные анионы(например, АВ-17-8). Направленный синтез ионообменных смол позволяет создавать материалы с заданными технологическими характеристиками.
Отечественная промышленность давно и широко использует марки реагентов: катиониты КУ-1, КУ-2-8, КУ-2-8 ЧС и аниониты АВ-17-8, АВ-17-8ЧС, АН-31, а также их зарубежные аналоги фирм DOWEX (США), PUROLITE (Великобретания), AMBERLITE.
Для промышленной очистки
Необходимо сказать, что один миллиметр накипи на теплопередающих поверхностях – это 10% перерасхода топлива
Правильно организованная водоподготовка поможет экономить топливо и продлит срок службы оборудования. Качественный теплоноситель позволяет существенно продлить срок службы теплоэнергетического оборудования до капитального ремонта.
Ионообменная фильтрация действительно очищает воду от солей, образующих накипь. Чем выше температура поверхности, тем меньше альтернатив ионообменной фильтрации.