Дискриминация гипотез по кинетическим экспериментам
Кинетические методы используют для проверки адекватности гипотез, оставшихся после других методов дискриминации, решая обратную задачу химической кинетики – оценивание констант и сравнение полученных кинетических моделей статистическими методами. Вместе с тем, весьма эффективными путями использования кинетического эксперимента, как было отмечено выше, являются измерения кинетических изотопных эффектов (КИЭ) и анализ селективности стехиометрически многозначных процессов в зависимости от концентраций реагентов и от величины степени превращения XA.
Кинетические изотопные эффекты
Первичным кинетическим изотопным эффектом называют различие в скоростях разрыва (образования) химических связей при замене одного из атомов рвущейся (образующейся) связи его изотопом.
В основе первичного КИЭ при разрыве или образовании связи, например, С-Н, лежит различие величин нулевой энергии колебательного уровня этой связи, зависящей от природы изотопов, например, С (12С, 13С, 14С) или Н (1Н, 2D, 3T). Так, нулевая энергия связи U0 C-H ~ на 5 кДж/моль выше U0 для С-D. Поскольку соответствующие частоты колебаний в переходном состоянии в значительно меньшей степени зависят от массы изотопа (при наличии других тяжелых атомов и групп в реагентах), энергия активации в случае более легкого изотопа (С-Н) будет также ниже энергии активации для С-D и С-Т. Максимальные КИЭ разрыва связи без учета образования новых связей составляют:
Поскольку в переходном состоянии связь рвется не полностью, максимальные значения КИЭ не достигаются. Величина КИЭ будет тем больше, чем в большей степени связи C-X, M-X, M-H разрываются в переходном состоянии.
Из теоретического анализа простой реакции переноса протона
в апротонных растворителях сделаны следующие выводы:
1) Основной вклад в КИЭ по водороду вносит потеря энергии валентного колебания связи А–Н при образовании переходного состояния. Частоты валентных колебаний в переходном состоянии ниже, чем в начальном и в меньшей степени зависят от массы изотопа.
2) Величина КИЭ определяется главным образом разностью энергий активации, а не отношением предэкспонентов.
3) Значения КИЭ обычно меньше, чем это следует из значений нулевых частот колебаний связей А–Н и A–D.
4) При использовании трех изотопов 1H, 2D и 3Т выполняется соотношение
Если связь в реагенте рвется в лимитирующей стадии, можно ожидать при замене, например H на D, значительного КИЭ. Так, в реакции
КИЭ . Это означает, что именно связь C-D рвется в лимитирующей стадии. В квазиравновесных стадиях наблюдаются равновесные (термодинамические) изотопные эффекты (ТИЭ).
Пример. При исследовании реакции окисления этилена хлоридом Pd(II) (Вакер-процесс) было обнаружено, что в реакциях
и все четыре атома D переходят в ацетальдегид. Следовательно, С-Н связь не рвется в лимитирующей стадии. Вместе с тем, при замене H на D в воде . Этот эффект, судя по кинетике процесса есть ТИЭ, появление которого связано с разницей констант автопротолиза Kw D2O и H2O (Kw H2O в 5.13 раз выше Kw D2O), и, соответственно, констант кислотной диссоциации аквакомплексов палладия(II).
Пример. При изучении кинетики реакций окислительного карбонилирования ацетилена в растворах комплексов Pd(I) с образованием ангидридов малеиновой (МА) и янтарной (ЯА) кислот, акриловой (АК) и пропионовой (ПК) кислот установлено, что МА и ЯА образуются с КИЭ ~ 1.
Этот факт свидетельствует о том, что в образовании МА молекула H2O разрывается за необратимой медленной стадией. ЯА образуется из МА с переносом атома водорода от PdH, но также за медленной стадией. КИЭ образования АК и ПК составляют 1.8 и 2.5, соответственно, что говорит о разрыве Pd-H (и образовании С-Н) в медленной стадии. Образование МА и ЯА сопровождается сильным обменом С-Н/C-D, что дает дополнительную информацию о механизме процесса.
Пример. При изучении механизма реакции
предложили 41 гипотезу о механизме реакции. На основании измерения КИЭ при переходе от CH3OH к CH3OD были отброшены 32 гипотезы (). Еще четыре гипотезы были отклонены на основании предварительных экспериментов. Оставшиеся пять гипотез являются работающими гипотезами до настоящего времени.
Анализ селективности процесса
Селективность процесса характеризует долю исходного ключевого реагента, превратившегося в целевой продукт, от общего количества ключевого реагента, превратившегося по всем маршрутам.
Интегральная селективность процесса образования вещества i по ключевому реагенту k
, (1)
Поскольку , получим
, (2)
где Xk – степень конверсии k-того реагента.
Дифференциальная селективность sik определяется уравнением (3)
, (3)
где Rj – скорость реакции j, bij – стехиометрические коэффициенты i-того продукта в j-той реакции, bkj – тоже для k-того исходного реагента в j-той реакции. Величина sik > 0, так как bkj < 0. В стационарном реакторе полного смешения sik = Sij.
Анализ изменений селективности от концентраций реагентов (или от степени превращения Xk) полезен для предварительной дискриминации гипотез.
Пример. Рассмотрим две параллельные реакции и скорости R1 и R2 по итоговым уравнениям двух маршрутов в проточном реакторе полного смешения:
Рассмотрим селективность расходования реагента А по первой реакции
(4)
(,,).
(5)
Если реакции имеют простую кинетику, например, и ,