Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид
Рефераты >> Химия >> Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид

Технологическое оформление процесса окисления диоксида серы.

Технологическая схема и аппаратура контактного узла зависит от вида применяемого сырья, способов отвода тепла реакции, производительности установки и других факторов.

На рис. представлена схема контактного узла с одинарным контактированием, включая 4-слойный аппарат с промежуточными теплообменниками. Очищенный и осушенный сернистый газ подается газодувкой, нагревается во внешнем и промежуточных теплообменниках и поступает на I слой контактного аппарата. Пройдя все слои катализатора с промежуточным охлаждением в теплообменниках, прореагировавший газ покидает контактный аппарат, охлаждается во внешних теплообменниках и поступает на абсорбцию образовавшегося SO3. оптимальный температурный режим поддерживается с помощью байпасных газоходов с задвижками на теплообменниках, которые обычно устанавливают последовательно по ходу газа, иногда – параллельно перед двумя последними слоями. Максимальная степень превращения в контактном аппарате 98,0 – 98,5%.

При двойном контактировании после первой стадии катализа из газовой смеси поглощается образовавшийся SO3 и на вторую стадию катализа поступает неокисленная часть исходного SO2. Степень превращения 99,5 – 99,8%.

В современном сернокислотном производстве наиболее широко применяются контактные аппараты с горизонтальными стационарными слоями катализатора и отводом тепла в выносных теплообменниках. Применяются также контактные аппараты с внутренними теплообменниками либо с поддувом воздуха или газа.

При работе по короткой схеме на газах от сжигания серы или сероводорода применяется охлаждение газа между слоями в пароперегревателях, в газовоздушных теплообменниках или поддувом воздуха, что значительно упрощает конструкцию контактного узла.

Для устойчивой работы контактного аппарата необходимо равномерное распределение газа и температур по сечению аппарата, достаточная мощность теплообменников, надежная схема регулирования, простота обслуживании и ремонта и др. Наибольшая равномерность температур и концентраций газа в аппарате достигнута при использовании выносных теплообменников.

Использование аппарата ОТС – с отводом тепла серой позволяет путем использования высокотемпературного теплоносителя увеличить степень конверсии по сравнению с традиционными методами конверсии на 1,5 – 1,8% вследствие снижения градиента температур между стенками трубок и серединой слоя. Рабочая температура охлаждающего агента в ОТС совпадает с температурой зажигания катализатора, что позволяет исключить возможность инактивации катализатора при возрастании скорости газов. При этом в два раза меньше, чем у ПНР, расход металла.

Также используются кассетные аппараты (катализатор помещен в кассеты из проволоки).

По условиям осуществления процесса окисления SO2 и принципу теплоотвода контактные аппараты можно разделить на:

аппараты со стационарными слоями катализатора и промежуточным теплообменом (наиболее широко применяемые);

аппараты со стационарными слоями катализатора и непрерывным теплообменом;

аппараты с кипящими слоями катализатора и непрерывным теплообменом;

аппараты с нестационарным режимом окисления и теплоотвода в слоях катализатора.

2. Математические модели химических реакторов

Центральным аппаратом в любой химико-технологической системе, включающей целый ряд машин и аппаратов, соединенных между собой различными связями, является химический реактор - аппарат, в котором протекает химический процесс. Выбор типа, конструкции и расчет химического реактора, создание системы управление его работой – одна из важных задач химической технологии.

Как и в случае других аппаратов, используемых в химической промышленности (теплообменных, массообменных и др.), для изучения, расчета и проектирования химических реакторов применяется метод моделирования.

Под математической моделью понимается некоторое упрощенное изображение процесса в реакторе, которое сохраняется наиболее существенные свойства реального объекта и передает их в математической форме. В зависимости от постановленной задачи математическая модель учитывает разное число признаков объекта и поэтому модель может быть широкой и узкой.

2.1 Модель реактора идеального вытеснения

Реакторы вытеснения – трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемещение имеет локальный характер и вызывается неравномерностью распределения скорости потока и ее флуктуациями, а также завихрениями. Реакторы вытеснения бывают двух видов: идеального и полного вытеснения.

Идеально вытеснение предполагает, что любое количество реагентов и продуктов через реактор перемещается как твердый поршень, и по длине реактора (в пространстве) в соответствии с особенностями реакции и сопровождающих ее физических явлений устанавливается определенное распределение концентраций участников реакции, температуры и других параметров.К реакторам идеального вытеснения относятся те аппараты, в которых отсутствует радиальное и продольное перемешивание.

Материальный баланс

Материальный баланс – вещественное выражение закона сохранения массы вещества, согласно которому по всякой замкнутой системе масса веществ, вступивших во взаимодействие, равна массе веществ, образовавшихся в результате взаимодействия. Применительно к материальному балансу любого технологического процесса это означает, что масса веществ, поступивших на технологическую операцию – приход, равна массе полученных веществ – расходу. Материальный баланс составляют по уравнению основной суммарной реакции с учетом параллельных и побочных реакций.

Материальный баланс непрерывно действующих проточных реакторов составляется, как правило, для установившегося (стационарного) режима, при котором общая масса веществ, поступивших в аппарат за данный период времени, равна массе веществ, вышедших из аппарата. Количество же всех веществ в аппарате постоянно, т. е. накопления или убыли суммарного количества веществ не происходит.[3]

Составим материальный баланс реактора идеального вытеснения.

dV ZNA

x x+dx

Реактор представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме. Изменение концентрации происходит по длине. Выделим элементарный объем dV, для которого считается материальный баланс, где ZNA-концентрация ключевого реагента.

[кг/c]=[(м3/с)∙(м3/кмоль)∙(кг/кмоль)]

- расход

-массовый расход химической реакции

[кг/с]=[(кмоль/м3∙с)∙(м3)∙(кг/кмоль)


Страница: