Биополимеры и их роль в нефтедобыче
К преимуществам биополимеров по сравнению с другими реагентами, например с кремнийорганическими соединениями, можно отнести их безопасность, как для человека, так и для окружающей среды.
Преимуществом производства полисахаридов микробным способом является [5]
1. Гарантированностъ производства и качества, не зависящих от внешних факторов, влияющих на урожайность и свойства растительных полисахаридов;
2. Производство полимера может быть проконтролировано в пределах точных ограничений и масштаб производства может быть приспособлен к рынку;
3. Расположение производства может быть устроено с использованием удобных или дешевых субстратов.
Однако, имеется и ряд ограничений по размещению производства [5]
1. Высокая стоимость установки и пуска ферментационного оборудования;
2. Большие потребности в растворителе;
3. Потребность в значительном количестве энергии;
4. Потребность в квалифицированных кадрах и обеспечении культуры производства.
4. Основные представители биополимеров
Ксантан
Ксантан (ксантановая камедь / смола) наиболее известный микробный полисахарид. Он культивируется в среде на основе мелассы. Ксантан характеризуют как внеклеточный микробный экзополисахарид, синтезируемый бактериями Xanthomonas campestris, образующийся в виде покрытия на каждой бактерии. Метод получения ксантановой смолы был разработан в 1961 году в США и уже с середины 60-х годов его начали применять в качестве компонента буровых растворов [13] Данный биополимер выпускается под различными фирменными названиями: келцан, Кеm-XD, ХС-биополимер, Barazan D, Flo-Vis в виде порошка [14]. Стоимость биополимера в зависимости от степени очистки товарного продукта может достигатъ нескольких десятков тысяч долларов за тонну.
Молекулярная масса ксантана может составлять от 5 до 20 млн [15].
Ксантан валяется кислым гетерополисахаридом. В состав ксантана входят остатки D-глюкозы, D-глюкуроновой кислоты, D-маннозы в соотношении 2,8:2,0:2,0 соответственно. Кроме того, он содержит около 4,7% О-ацетильных групп и около 3% остатков пировиноградной кислоты, связанных с остатками глюкозы в боковых цепях в виде циклического кеталя [16].
Наиболее важное качество камеди ксантана – это высокая прочность на разрыв одновременно с большой растяжимостью. Кроме того, камедь легко смешивается и поглощается другими веществами, образуя стабильные суспензии и термообратимые мягкие эластичные гели, например, с камедью рожкового дерева. Растворы камеди ксантана высоко псевдопластичны. При увеличении сдвигового усилия резко понижается вязкость. После снятия усилия начальная вязкость восстанавливается почти мгновенно.
Ксантановая камедь используется для приготовления буровых растворов в качестве структурообразователя. Биополимер эффективно работает во всех буровых растворах на водной основе – от сильно утяжеленных до систем с низким содержанием твердой фазы, включая пресную, морскую воду, системы на основе соленой воды и плотные рассолы; обеспечивает реологический профиль повышенной вязкости при низких скоростях сдвига и понижает сдвиговые характеристики при высоких скоростях сдвига. Эти характеристики часто приводят к образованию жидкостей, где предельное напряжение сдвига выше, чем пластическая вязкость.
Водные растворы его имеют способность макроструктурироватъся в результате образования надмолекулярных пространственных сеток, состоящих из спиральных структурных единиц, соединяющихся водородными и ван-дер-ваальсовыми связями. Макромолекулы ксантана, помимо полярных функциональных групп, содержат также анионные карбоксилатные группы, располагающиеся на боковых ответвлениях внутри основной спирали. Видимо, подобным экранированием заряженных участков макромолекулы ксантана объясняется обратимость и прочность к сдвиговым нагрузкам гидратированных макромолекулярных структур, которые обеспечивают псевдопластичный характер реологического поведения биополимерных растворов.
Снижение сдвиговых усилий позволяет свести к минимуму потери давления и давление в стояке внутри бурильной колонны и на долоте, для оптимизации гидравлических показателей и максимальной скорости проходки.
Кроме того, межтрубное пространство, в котором наблюдаются низкие сдвиговые усилия, имеет высокоэффективную вязкость для очистки скважины и суспензии шлама [5].
Склерглюкан
Склероглюкан – нейтральный гомополисахарид, в котором остатки глюкопиранозы связаны β – (1,3) – связями. Склерглюкан синтезируется в среде на основе глюкозы. Склероглюкан впервые описан в 60-х годах прошлого столетия [17].
В водном растворе молекула склероглюкана представляет собой тройную спираль и вследствие этого образует малоэластичные стержни с большим гидродинамическим радиусом. Склерглюкан легко растворяется в воде, образуя псевдопластичные растворы, имеющие большую толерантность в широком диапазоне температуры, рН и концентрации солей. Трехвалентные катионы (Сг3+, Al3+, Fe3+) могут вызывать гелеобразование, отмечена нечувствительность склерглюкана к действию одно- и двух – валентных катионов, а также то, что склероглюкан термостабильнее, чем ксантан [18].
Эмульсан
Эмульсан – первый ЭПС, получаемый в промышленном масштабе на основе этанола в качестве источника углерода. Он называется также α-эмульсан, или «неоэмульсан», и представляет собой внеклеточный микробный липополисахарид, ассоциированный с белком. Слово «эмульсан» отражает полисахаридную структуру компонентов и исключительную эмульгирующую активность полимера. α-эмульсан состоит в основном из N- и О-ацилированных остатков D-галактозамина и аминоуроновой кислоты. О-Ацильная часть α-эмульсана содержит от 5 до 19% (чаще 7–14%) остатков жирных кислот, включающих 10–18 атомов углерода, причем более 50% жирных кислот составляют 2- и 3-гидроксидодекановые кислоты.
β-Эмульсан, или «протоэмульсан», получают культивированием A.caleoaceticus RAG-1 на сырой нефти или гексадекане. β-эмульсан отличается меньшим содержанием остатков жирных кислот. Их число не превышает 2–3%, а содержание 2- и 3-гидроксидодекановых кислот составляет менее 50%.
α-Эмульсан выделяют из культуральной жидкости осаждением с помощью сульфата аммония или переводом в водонерастворимую четвертичную аммониевую соль. Благодаря большому количеству остатков жирных кислот в молекуле эмульсан может быть выделен экстракцией органическими растворителями.
Молекулярная масса эмульсана, вычисленная на основании характеристической вязкости составляет 9,88*105; определенная методом седиментации и диффузии – 976 тысяч [19].
Эмульсан – наиболее эффективный стабилизатор, причем это свойство сохраняется для различных концентраций эмульгаторов. Эмульгирующая способность зависит от содержания остатков жирных кислот, а также от молекулярной массы полимера. Эмульсан эмульгирует легкие фракции нефти, дизельное топливо, сырую нефть и газойли. Скорость образования эмульсии зависит от концентрации углеводорода и эмульгатора. При рН выше 6,0 для образования стабильных эмульсий необходимы небольшие количества (1–100 ммоль) солей Ca 2+, Mg 2+ и Mn 2+