Бензин
Показателем детонационной стойкости автомобильных бензинов является октановое число. Октановое число численно равно содержанию (% об.) изооктана (2,2,4,-триметилпентана) в его смеси с н - гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому на одноцилиндровом двигателе с переменной степенью сжатия в стандартных условиях на бедной рабочей смеси. В лабораторных условиях октановое число автомобильных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65. Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511-82) и исследовательским (по ГОСТ 8226-82).
Методы отличаются условиями проведения испытаний. Испытания по моторному методу проводят при более напряженном режиме работы одноцилиндровой установки, чем по исследовательскому. Поэтому октановое число, определенное моторным методом, обычно ниже октанового числа, определенного исследовательским методом. Октановое число, полученное моторным методом в большей степени характеризует детонационную стойкость топлива при эксплуатации автомобиля в условиях повышенного теплового форсированного режима, октановое число, полученное исследовательским методом, больше характеризует бензин при работе на частичных нагрузках в условиях городской езды.
Детонационная стойкость автомобильных бензинов определяется их углеводородным составом. Наибольшей детонационной стойкостью обладают ароматические углеводороды. Самая низкая детонационная стойкость у парафиновых углеводородов нормального строения, причем она уменьшается с увеличением их молекулярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормальными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стойкость. По детонационной стойкости нафтены превосходят парафиновые углеводороды, но уступают ароматическим углеводородам. Октановое число углеводородов снижается в следующем порядке:
ароматические >изопарафины > олефины > нафтены > н-парафины.
Разницу между октановыми числами бензина, определенными двумя методами, называют чувствительностью бензина. Наибольшую чувствительность имеют олефиновые углеводороды. Чувствительность ароматических углеводородов несколько ниже. Для парафиновых углеводородов эта разница очень мала, а высокомолекулярные низкооктановые парафиновые углеводороды имеют отрицательную чувствительность. Соответственно более по чувствительности (9-12 ед.) отличаются бензины каталитического крекинга и каталитического риформинга, содержащие непредельные и ароматические углеводороды. Менее чувствительны (1-2 ед.) к режиму работы двигателя алкилбензин и прямогонные бензины, состоящие из парафиновых и изопарафиновых углеводородов.
Для повышения октановых чисел товарных бензинов используют также специальные антидетонационные присадки и высокооктановые компоненты (этиловую жидкость, органические соединения марганца, железа, ароматические амины, метил-третбутиловый эфир).
Химическая стабильность
Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя. Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов.
При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолянистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.
Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом.
Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга, которые в значительных количествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.
Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100°С и давлении кислорода по ГОСТ 4039-88. Этим методом определяют индукционный период, т.е. время от начала испытания до начала процесса окисления бензина. Чем выше индукционный период, тем выше стойкость бензина к окислению при длительном хранении. По индукционным периодам бензины различных технологических процессов существенно различаются. Индукционные периоды бензинов термического крекинга составляют 50-250 мин; каталитического крекинга - 240-1000 мин; прямой перегонки - более 1200 мин; каталитического риформинга - более 1500 мин.
Установлено, что бензины, характеризующиеся индукционным периодом не менее 900 мин, могут сохранять свои свойства в течение гарантийного срока хранения (5 лет). Так как не все бензины предназначены для длительного хранения, в нормативно-технической документации нормы на индукционный период установлены от 360 до 1200 мин.
Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов.
Химическая стабильность этилированных бензинов зависит также от содержания в них этиловой жидкости, так как тетраэтилсвинец при хранении подвергается окислению с образованием нерастворимого осадка.
Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12.