Белки, углеводы, жиры и липоиды
Рефераты >> Химия >> Белки, углеводы, жиры и липоиды

Выяснение всех деталей строения белковой макромолекулы, т. е. полная характеристика ее первичной, вторичной и третичной структуры, — очень сложная и длительная работа. Однако для ряда белков эти данные уже получены. На рисунке 66 изображена структура белка рибонуклеазы. Рибонуклеаза — один из первых белков, структура которого расшифрована полностью. Как видно из рисунка 66, первичная структура рибонуклеазы образована 124 аминокислотными остатками. Счет аминокислотных остатков в полипептидной цепи принято вести от аминокислоты, сохранившей NH2-группу (N — конец цепи), последней аминокислотой считается аминокислота, сохранившая карбоксильную группу (С — конец цепи). Таким образом, первая по счету аминокислота рибонуклеазы — лизин, вторая — глютаминовая кислота и т. д. Достаточно исключить или переставить одну аминокислоту в цепи — и вместо рибонуклеазы возникнет другой белок с другими свойствами.

Для упрощения на рисунке не показано, как закручивается в спираль полипептидная цепь, а третичная структура изображена в плоскости бумаги. Обратите внимание на «сшивки» между 26-й и 87-й аминокислотами, между 66-й и 73-й, между 56-й и 111-й, между 40-й и 97-й. В этих местах между радиолами аминокислоты цистеина, находящимися на удаленных участках полипептидной цепи, образуются —S—S-связи.

Денатурация белка. Чем выше уровень организации белка, тем слабее поддерживающие его связи. Под влиянием различных физических и химических факторов — высокой температуры, действия химических веществ, лучистой энергии и др.— «слабые» связи рвутся, структуры белка — третичная, вторичная — деформируются, разрушаются и свойства его изменяются. Нарушение нативной уникальной структуры белка называется денатурацией. Степень денатурации белка зависит от интенсивности воздействия на него различных факторов: чем интенсивнее воздействие, тем глубже денатурация.

При слабом воздействии изменение белка может ограничиться частичным развертыванием третичной структуры. При более сильном воздействии макромолекула может развернуться полностью и остаться в форме своей первичной структуры (рис. 67).

Разные белки сильно отличаются друг от друга по легкости, с какой они денатурируются. Денатурация яичного белка происходит, например, при 60—70°С, а сократительный белок мышц денатурируется около 45°С. Многие белки денатурируются от действия ничтожных концентраций химических веществ, а некоторые даже от незначительного механического воздействия.

Как показывают исследования, процесс денатурации обратим, т. е. денатурированный белок может перейти обратно в нативный. Даже полностью развернутая макромолекула белка способна самопроизвольно восстановить свою структуру. Отсюда следует, что все особенности строения макромолекулы нативного белка определяются его первичной структурой, т. е. составом аминокислот и порядком их следования в цепи.

Роль белков в клетке. Значение белков для жизни велико и многообразно. На первом месте стоит их каталитическая функция. Скорость химической реакции зависит от природы реагирующих веществ и от их концентрации. Химическая активность клеточных веществ, как правило, невелика. Концентрации их в клетке большей частью незначительны. Таким образом, реакции \ в клетке должны были бы протекать бесконечно медленно. Между тем известно, что химические реакции в клетке идут со значительной скоростью. Это достигается благодаря наличию в клетке катализаторов. Все клеточные катализаторы — белки. Они называются биокатализаторами, а чаще их называют ферментами. Каталитическая активность ферментов необычайно велика. Так, например, фермент каталаза, катализирующий реакцию распада перекиси водорода, ускоряет эту реакцию в 1011 раз. По химической структуре ферменты ничем не отличаются от белков, не обладающих ферментативными функциями: те и другие построены из обычных аминокислот, те и другие обладают вторичной, третичной и т. д. структурами. В большинстве случаев ферменты катализируют превращение веществ, размеры молекул которых по сравнению с макромолекулами ферментов очень малы. Например, фермент каталаза имеет молекулярную массу около 100 000, а перекись водорода, распад которой катализирует каталаза, всего 34. Такое соотношение между размерами фермента и его субстрата (вещества, на которое действует фермент) наводит на мысль, что каталитическая активность ферментов определяется не всей его молекулой, а каким-то небольшим ее участком. Этот участок называется активным центром фермента. По-видимому, активный центр представляет собой какое-то сочетание групп, лежащих на расположенных рядом полипептидных цепях в третичной структуре фермента. Такое представление хорошо объясняет тот факт, что при денатурации фермента он лишается своей каталитической активности. Очевидно, при нарушении третичной структуры взаимное расположение полипептидных цепей изменяется, структура активного центра искажается, и фермент лишается активности. Почти каждая химическая реакция в клетке катализируется своим особым ферментом. Структура активного центра и структура субстрата точно соответствуют друг другу. Они подходят друг к другу, как ключ к замку. Благодаря наличию пространственного соответствия между структурой активного центра фермента и структурой субстрата они могут тесно сблизиться между собой, что и обеспечивает возможность реакции между ними.

Кроме каталитической функции, очень важна двигательная функция белков. Все виды движений, к которым способны клетки и организмы, — сокращение мышц у высших животных, мерцание ресничек у простейших, двигательные реакции растений и др. — выполняются особыми сократительными белками.

Еще одна функция белков — транспортная. Белок крови гемоглобин присоединяет кислород и разносит его по всему телу.

При введении чужеродных веществ или клеток в организм в нем происходит выработка особых белков, называемых антителами, которые связывают и обезвреживают чужеродные вещества. В этом случае белки выполняют защитную функцию.

Существенно значение белков и как источника энергии. Белки распадаются в клетке до аминокислот. Часть аминокислот употребляется для синтеза белков, часть же подвергается глубокому расщеплению, в ходе которого освобождается энергия. При расщеплении 1 г белка освобождается 17,6 кдж (4,2 ккал).

Белки — это материал, из которого состоит клетка. Белки участвуют в построении внешней оболочки клетки, внутриклеточных мембран. У высших организмов из белков образованы кровеносные сосуды, роговица глаза, сухожилия, хрящ, волосы.

Таким образом, кроме каталитической, двигательной, транспортной, защитной и энергетической функций, белкам принадлежит еще и структурная функция.

2. Углеводы

В животной клетке углеводы содержатся в небольшом количестве— около 1% (от массы сухого вещества). В клетках печени и мышцах содержание их более высокое — до 5%. Наиболее богаты углеводами растительные клетки. В листьях, семенах, клубнях картофеля и т. д. углеводы составляют почти 90%.

Углеводы представляют собой органические соединения, в состав которых входят углерод, водород и кислород.


Страница: