Амилолитические препараты
Рефераты >> Химия >> Амилолитические препараты

Амилолитические препараты широко выпускаются в нашей стране и за рубежом. В основном это крупнотоннажное производство. Амилазы нахо­дят применение почти во всех областях, где перерабатывается крахмалсо-держащее сырье. Амилазы используют для осахаривания зернового и кар­тофельного крахмала. Самым большим потребителем амилолитических ферментов является спиртовая и пивоваренная промышленности, где в на­стоящее время солод (проращенное зерно) успешно заменяется амилолити­ческими ферментными препаратами.

Источники получения амилаз

Амилазы очень широко распространены в природе. Они синтезируются многими микроорганизмами (бактерии, грибы, актиномицеты, дрожжи), животными и растениями. До развития ферментной промышленности глав­ным промышленным источником получения амилаз в европейских странах было проросшее зерно (солод). Для медицинских целей амилазы получали из животного сырья. В настоящее время главным источником амилаз явля­ются микроорганизмы, особенно бактерии, грибы и реже дрожжи.

Механизм действия и свойства амилаз

Субстратами для действия амилаз являются крахмал, состоящий из амило­зы и амилопектина, продукты частичного гидролиза крахмала и гликоген.

Крахмал - растительный полисахарид с очень сложным строением. Это двухкомпонентное соединение, состоящее из 13-30% амилозы и 70-85% амилопектина. Оба компонента неоднородны, их молекулярная масса (М. м.) колеблется в широких пределах и зависит от природы крахмала. Амилоза - это неветвящийся полимер, в котором остатки глюкозы соеди­нены a-1, 4-гликозидной связью; степень полимеризации около 2000. В «аномальных» амилозах с одной-двумя a-1, 6-связями полимеризация мо­жет возрасти до 6000 (рис.1). Амило­за практически не об­ладает восстанавлива­ющей способностью, так как в каждой мо­лекуле амилозы име­ется только одна сво­бодная альдегидная группа.

Молекула амилозы представляет собой растянутую спираль, шаг которой составля­ет 10,6 А и в каждый виток входит 3 остатка глюкозы. Максималь-

Рис 1. Строение амилозы:

а — амилоза без аномальных отклонений; б - схема возмож­ных ветвлений амилозы; в — спираль амилозы в растворе с за­ключенными в ее полость молекулами йода.

Концевые звенья с

альдегидными группами 1 разветвление

- 2 разветвления 4 разветвления 8 развет

16 концевых звеньев

64 концевых

звена

Рис. 2.2. Амилопектин, схема дихо­томического деления амилопектина (по К. Мейеру):

а - в плоскости; б - в пространстве.

ная длина молекулы амилозы достигает 7000 А. В растворе спираль сжимается за счет увеличения витка, в котором уже участвует 6 остатков глю­козы. При вхождении молекул йода в спираль амилозы возни­кает характерный синий цвет. Строго говорить о величине молекулы амилозы нельзя, т. е. даже из одного образца крахмала извлекается амило­за, с величиной молекулы от 500 до 2000 остатков глюкозы. Амилопектин имеет большую молекулярную массу, чем ами­лоза, и более сложное строе­ние. Это ветвящийся полиса­харид. Предполагается, ами­лопектин ветвится дихотоми­чески, т. е. число концевых звеньев всегда на единицу больше числа звеньев, дающих ветвление, а сумма этих чисел дает общее число звеньев по всей цепи (см. рис. 2.2).

Механизм действия. К группе амилотических ферментов относятся a- и b-амилазы, глюкоамилаза, пуллуланаза, изоамилаза и некоторые другие ферменты. Амилазы бывают двух типов: эндо- и экзоамилазы. Четко выра­женной эндоамилазой является а-амилаза, способная к разрыву внутримо­лекулярных связей в высокополимерных цепях субстрата.

Глюкоамилаза и b-амилаза являются экзоамилазами, т. е. ферментами, атакующими субстрат с нередуцирующего конца.

При изучении механизма действия амилаз имеются определенные слож­ности, и прежде всего они заключаются в том, что субстрат - крахмал неод­нороден и имеет различные характеристики по степени полимеризации гли-козидной цепи и количеству ветвлений.

Реакции, катализируемые амилазами, имеют две стадии: короткую -предстационарную и длительную - стационарную. Во время первой стадии эндоамилаза быстро уменьшает молекулярную массу субстрата, образуя смесь линейных и разветвленных олигосахаридов. Второй этап реакции продолжается, пока продукты гидролиза не перестанут окрашиваться йо­дом; он протекает значительно медленнее и зависит от индивидуальных свойств фермента и его природы. Поэтому конечные продукты гидролиза а-амилазами могут быть различными. Первая стадия воздействия фермента на субстрат хотя и носит неупорядоченный характер, имеет для всех видов a-амилаз схожий механизм.

Существует две гипотезы о механизме действия экзоамилаз на субстрат. Первая гипотеза предполагает, что, воздействуя на субстрат по одноцепочечному или «молниеобразному» механизму, экзоамилаза образует фер­мент-субстратный комплекс с захватом нередуцирующего конца цепи.

Дальнейшее продвижение фер­мента по этой цепи происходит до полного ее гидролиза. По второй гипотезе (b- и глюко­амилаза действуют на субстрат путем механизма множественной атаки, т. е. фермент образует комплекс с молекулой субстрата, затем через несколько этапов этот комплекс распадается и фер­мент связывается с новой моле­кулой субстрата. Иными слова­ми, при множественной атаке происходит нечто среднее между неупорядоченным механизмом и одноцепочечной, «молниеобразной» атакой. Для полного гидро­лиза по этому механизму одна

молекула субстрата должна образовывать много раз фермент-субстратные комплексы. При этом возможен гидролиз нескольких связей в одном ката­литическом акте.

Механизм воздействия амилаз на субстрат может быть рассмотрен с не­скольких позиций:

1) вид разрываемой связи (a-1,4 или a-1,6);

2) тип воздействия на субстрат (эндо- или экзо-);

3) влияние на скорость гидро­лиза степени полимеризации субстрата;

4) возможность гидролиза олиго­сахаридов;

4) способность фермента к множественной атаке субстрата.

Наличие признаков амилаз, отраженных в 3 и 4 позициях, при действии на линейные субстраты может свидетельствовать о существовании у этих ферментов подцентровой структуры. Вероятно, активный центр амилазы может состоять из нескольких подцентров, каждый из которых может вступать в контакты с глюкозным остатком. Энергия взаимодействия (А;), выраженная в единицах свободной энергии (кДж/моль), определяет подцентровое сродство фермента к субстрату. Это сродство индивидуаль­но и может быть как положительным, так и отрицательным. Вероятность существования подцентровых структур амилаз помогает установить стро­ение активного центра амилаз, дает более четкое объяснение субстратной специфичности, но не дает объяснений механизма гидролиза разветвлен­ных субстратов.


Страница: