Алкилирование фенолов
Содержание
Введение
1. Характеристика процессов алкилирования
2. Химия и теоретические основы алкилирования фенолов
3. Технология процесса алкилирования фенолов
4. Продукты получения
Список литературы
Введение
Алкилированием называют процессы введения алкильных групп в молекулы органических и некоторых неорганических веществ. Эти реакции имеют очень большое практическое значение для синтеза алкилированных в ядро ароматических соединений, изопарафинов, многих меркаптанов и сульфидов, аминов, веществ с простой эфирной связью, элемент- и металлорганических соединений, продуктов переработки -оксидов и ацетилена. Процессы алкилирования часто являются промежуточными стадиями в производстве мономеров, моющих веществ и т. д.
Многие из продуктов алкилирования производятся в очень крупных масштабах. Так, в США синтезируют ежегодно около 4 млн. т этилбензола, 1,6 млн. т изопропилбензола, 0,4 млн. т высших алкилбензолов, свыше 4 млн. т гликолей и других продуктов переработки алкиленоксидов, около 30 млн. т изопарафинового алкилата, около 1 млн. т трет-бутилметилового эфира и т. д.
1. Характеристика процессов алкилирования
1. Классификация реакций алкилирования
Наиболее рациональная классификация процессов алкилирования основана на типе вновь образующейся связи.
Алкилирование по атому углерода (C-алкилирование) состоит в замещении на алкильную группу атома водорода, находившегося при атоме углерода. К этому замещению способны парафины, но наиболее характерно алкилирование для ароматических соединений (реакция Фриделя – Крафтса):
Алкилирование по атомам кислорода и серы (O- и S-алкилирование) представляет собой реакцию, в результате которой алкильная группа связывается с атомом кислорода или серы:
ArOH + RCI ArOH + NaCI + H2O
NaSH + RCI → RSH + NaCI
В данном случае под слишком общее определение алкилирования подпадают и такие процессы, как гидролиз хлорпроизводных или гидратация олефинов, и это показывает, что алкилированием следует называть только такие реакции введения алкильной группы, которые не имеют других, более существенных и определяющих классификационных признаков.
Алкилирование по атому азота (N-алкилирование) состоит в замещении атомов водорода в аммиаке или в аминах на алкильные группы. Это - важнейший из методов синтеза аминов:
ROH + NH3 → RNH2 + H2O
Как и в случае реакций гидролиза и гидратации, N-алкилирование нередко классифицируют как аммонолиз (или аминолиз) органических соединений).
Алкилирование по атомам других элементов (Si-, Pb-, AI-алкилирование) представляет собой важнейший путь получения элемент- и металлорганических соединений, когда алкильная группа непосредственно связывается с гетероатомом:
2RCI + Si R2SiCI2
4C2H5CI + 4PbNa → Pb(C2H5)4 + 4NaCI + 3Pb
3C3H6 + AI + 1,5H2 → Al(C3H7)3
Другая классификация реакций алкилирования основана на различиях в строении алкильной группы, вводимой в органическое или неорганическое соединение. Она может быть насыщенной алифатической (этильной и изопропильной) или циклической. В последнем случае реакцию иногда называют циклоалкилированием:
При введении фенильной или вообще арильной группы образуется непосредственная связь с углеродным атомом ароматического ядра (арилирование):
C6H5CI + NH3 → C6H5NH2 + HCI
В алкильную группу может входить ароматическое ядро или двойная связь, и, если последняя достаточно удалена от реакционного центра, реакция мало отличается от обычных процессов алкилирования:
CH2=CH-CH2CI + RNH2 → RNHCH2-CH=CH2 + HCI
Однако введение винильной группы (винилирование) занимает особое место и осуществляется главным образом при помощи ацетилена:
ROH + CH≡CH ROCH=CH2
CH3-COOH + CH≡CH CH3-COO-CH=CH2
Наконец, алкильные группы могут содержать различные заместители, например атомы хлора, гидрокси-, карбокси-, сульфокислотные группы:
C6H5ONa + CICH2-COONa → C6H5O-CH2-COONa + NaCI
ROH + HOCH2-CH2SO2ONa → ROCH2–CH2SO2ONa + H2O
Важнейшей из реакций введения замещенных алкильных групп является процесс -оксиалкилирования (в частном случае оксиэтилирование), охватывающий широкий круг реакций оксидов олефинов:
2. Алкилирующие агенты и катализаторы
Все алкилирующие агенты по типу связи, разрывающейся в них при алкилировании, целесообразно разделить на следующие группы:
1. Ненасыщенные соединения (олефин и ацетилен), у которых происходит разрыв -электронной связи между атомами углерода;
2. Хлорпроизводные с достаточно подвижным атомом хлора, способным замещаться под влиянием различных агентов;
3. Спирты, простые и сложные эфиры, в частности оксиды олефинов, у которых при алкилировании разрывается углерод-кислородная связь.
Олефины (этилен, пропилен, бутены и высшие) имеют первостепенное значение в качестве алкилирующих агентов. Ввиду дешевизны ими стараются пользоваться во всех случаях, где это возможно. Главное применение они нашли для С-алкилирования парафинов и ароматических соединений. Они неприменимы для N-алкилирования и не всегда эффективны при S- и O-алкилировании и синтезе металлорганических соединений.
Алкилирование олефинами в большинстве случаев протекает по ионному механизму через промежуточное образование карбокатионов и катализируется протонными и апротонными кислотами. Реакционная способность олефинов при реакциях такого типа определяется их склонностью к образованию карбокатионов:
Это означает, что удлинение и разветвление цепи углеродных атомов в олефине значительно повышает его способность к алкилированию:
CH2=CH2 < CH3-CH=CH2 < CH3-CH2-CH=CH2 < (CH3)2C=CH2