Адсорбционная хроматография
Рефераты >> Химия >> Адсорбционная хроматография

Поэтому на третий вопрос, который обычно задают начинающие хроматографисты, — какой обращенно-фазный сорбент является наилучшим, — ответить однозначно не удается ни одному исследователю с большим опытом работы. Обычно он честно и коротко говорит: «Я не знаю». Он может сказать, какой сорбент или сорбенты наиболее подходят для его работы, которые поэтому наилучшие для него. Он может поделиться опытом работы с этими сорбентами, знает, как их упаковывать, с какими растворителями работать, как регенерировать. Однако дать совет, какой сорбент является наилучшим вообще, очевидно, не может никто, независимо от предшествующего большого опыта.

Одна из причин, способствовавших быстрому росту применения обращенно-фазных сорбентов в ВЭЖХ, — это их способность четко разделять серии гомологов в порядке возрастания их молекулярной массы, делающая их в этом чем-то сходными с популярными в ГЖХ полиметилсилоксановыми фазами. При этом гомологи могут, в отличие от разделяемых методами адсорбционной или нормально-фазной хроматографии, не иметь функциональных групп — обращенно-фазный сорбент может так же четко разделить гексан и гептан, бензол и толуол, фенол и n-крезол, mреm-бутилтолуол и трет-амилтолуол. Это вовлекает в область анализа методом ВЭЖХ такие важные объекты, как углеводороды нефти, продукты нефтепереработки (бензины, керосины, газойли, смазочные масла, ароматические углеводороды), сланце- и углепереработки — очень важные многотоннажные продукты. Если нужно разделить вещества неполярные или малополярные, практически любой обращенно-фазный сорбент может при относительно простом подборе растворителя обеспечить почти идентичное разделение.

В настоящее время фирмы-производители выпускают разные обращенно-фазные сорбенты. Как видно из этого перечня, практически все производители выпускают привитые фазы С3 и C18 (последние нередко в нескольких вариантах), многие — C1-С3 (что нередко обозначает одно и то же — прививку триметилхлорсилана, иногда диметилдихлорсилана), некоторые — фенил, С4 или С6. Если плотность прививки фазы одинакова, то сорбент будет содержать для С4 - фазы в 2 раза меньше, а для C18 - фазы более чем в 2 раза больше привитого углерода, чем фаза С3. На практике эта плотность несколько падает в ряду С4—С8—C18, поэтому содержание углерода для С4 несколько больше, а для C18 — меньше, чем можно было ожидать. Так как удерживание соединений в обращенно-фазной хроматографии пропорционально содержанию привитого углерода (точнее, той части привитого углерода, которая доступна для взаимодействия с молекулами разделяемых веществ), то для сорбентов, одной торговой марки удерживание увеличивается в ряду С2—С4—C8—C18. Однако если взять сорбенты разных производителей, то заранее ничего сказать нельзя: нередко в таком случае сорбент с С8-фазой удерживает не слабее, а сильнее, чем с фазой C18, выпускаемой другой фирмой.

Наряду с неполярными привитыми фазами, выпускаемыми специально для обращенно-фазной хроматографии, в обращенно-фазном варианте часто используют нитрильную и аминную привитые фазы, а иногда и диольную. В этом случае они работают и разделяют вещества в основном по обращенно-фазному механизму, как имеющие короткий (Сз) привитой алкилсилан, а полярные группы или не участвуют в разделении, или играют второстепенную роль, несколько меняя селективность для ряда веществ определенной химической структуры.

В качестве растворителей для обращенно-фазной ВЭЖХ используют преимущественно метанол и ацетонитрил. Другие спирты, кроме метанола, используют редко, так как их вязкость значительно выше и при работе возникает слишком большое давление, а эффективность падает вследствие затрудненной диффузии в подвижной фазе. Тетрагидрофуран также используют значительно реже, во-первых, из-за нестабильности при хранении (он быстро окисляется, накапливая гидропероксиды, которые уменьшают диапазон УФ-пропускания, способны окислять привитую фазу и взрывоопасны), во-вторых, из-за трудности очистки перегонкой (необходимо разрушать пероксиды до перегонки во избежание взрыва).

Ацетонитрил имеет ряд преимуществ перед метанолом. При хорошей очистке он лучше пропускает в ближнем ультрафиолетовом диапазоне (ниже 210 нм) и позволяет работать в смеси вода — ацетонитрил при 200 и даже 190 нм. Он обычно обладает лучшими растворяющими свойствами для проб, чем метанол. При использовании смесей метанол — вода вязкость такой смеси не является аддитивной величиной (так же как и для смесей ацетонитрил — вода) и при 25 °С меняется от 0,89 и 0,57 МПа⋅с (для чистых воды и метанола соответственно) до 1,4 (цифры для смеси ацетонитрил — вода соответственно 0,89, 0,43 и 0,98). Большая вязкость смесей метанол — вода по сравнению со смесями ацетонитрил — вода (почти в 1,5 раза) затрудняет использование колонок, заполненных частицами сорбента размером 3 и 5 мкм, при использовании водно-метанольных смесей. Точно так же при градиентном элюировании колонки, работающие с системой метанол — вода, подвергаются при равном расходе действию больших давлений и быстрее выходят из строя. Наконец, не малую роль играет и то обстоятельство, что метанол относится к группе особо опасных ядов, находящихся на строгом контроле и учете, тогда как ацетонитрил к этой группе не относится.

К недостаткам ацетонитрила, несколько ограничивающим его использование, относятся его довольно высокая стоимость (особенно высокочистых сортов, предназначенных для ВЭЖХ и УФ-спектроскопии), некоторая токсичность, требующая предосторожностей при работе, а также то, что его труднее, чем метанол, освобождать от воды, так как он образует азеотропную смесь с водой. Это затрудняет его регенерацию из отработанного растворителя, что особенно важно при большом масштабе работы, например, при препаративной работе.

Особо следует сказать о качестве воды и о требованиях к ней. Вода, являющаяся в настоящее время одним из важнейших растворителей для ВЭЖХ, является как самым доступным, так и очень трудным для тщательной очистки растворителем. Если для изократических разделений, особенно при использовании не очень чувствительных шкал и работе не в ближнем УФ-диапазоне удается обойтись бидистиллятом (не деионизи-рованной водой!), то для градиентной работы и работы с высокочувствительными детекторами такого качества воды уже недостаточно. Деионизированная вода, как правило, не подходит для использования в ВЭЖХ: органические иониты, используемые для извлечения из нее неорганических ионов, дают воду с очень низкой проводимостью, однако очень заметно обогащенную органическими загрязнениями по сравнению с водой до деионизации. Удалить все органические соединения из воды очень трудно, особенно микроколичества — никакая перегонка или ректификация не помогают, так как вследствие образования азеотропных смесей отделить примеси органических соединений не удается.

Существуют системы высокой очистки воды, осуществляющие деионизацию с последующим извлечением органических соединений адсорбентами, однако они достаточно дороги. Разработаны системы, позволяющие резко уменьшить содержание органических соединений в воде путем обработки ее мощным УФ-облучением, иногда с последующей обработкой адсорбентами. Эти системы дешевле, но не так универсальны. Наконец, существуют патроны, заполненные адсорбентом, рассчитанным на извлечение органических соединений из определенного объема воды (обычно из 15 л) — они достаточно недороги и удобны, позволяют получить ровно столько очищенной воды, сколько нужно для ближайшей работы. Высокочистая вода нестабильна при хранении, поэтому лучше ее использовать достаточно быстро и свежеприготовленную.


Страница: