Абсорбционная установка
Воспользуемся обобщенным критериальным уравнением [5.1.6], применимое для различных конструкций барботажных тарелок:
[5.1.6]
При этом для жидкой фазы:
;
Для газовой фазы:
;
где А – коэффициент
Dx,Dy – коэффициенты молекулярной диффузии распределяемого компонента соответственно в жидкости и газе, ;
- Средние скорости жидкости и газа в барботажном слое, м/с;
ε – газосодержание барботажного слоя ;
Гс=- критерий гидравлического сопротивления, х-щий относительную величину удельной поверхности массопередачи на тарелке;
ΔPn=ρgh0 – гидравлическое сопротивление барботажного газо-жидкостного слоя (пены) на тарелке, Па;
h0 – высота слоя светлой жидкости на тарелке, м;
l – характерный линейный размер,(средний диаметр пузырька) газовой струи в барботажном слое, м.
В интенсивных гидродинамических режимах лин. Размер l становится практически постоянным. Тогда критериальные уравнения массоотдачи, приводится в этом случае к удобному для расчета виду:
; [5.1.7]
[5.1.8]
Выбираем сетчатую провальную тарелку со свободным сечением Fс=0,2 и ширенной щели δ=6мм; при этом dє=2δ=2*0,006=0,012м.
Найдем гидравлическое сопротивление барботажного газожидкостного слоя на тарелки, Па:[5.1.9]
, [5.1.9]
где hn – высота газожидкостного барботажного слоя (пены) на тарелке, м.
Высоту газожидкостного слоя для провальных тарелок определяют по уравнению:[5.1.10]
[5.1.10]
где - критерий Фруда;
W0 – скорость газа в свободном сечении (щелях) тарелки, м/с;
В – коэффициент, равный 2,95 для нижнего и 10 верхнего пределов работы тарелки. Наиболее интенсивный режим работы тарелок соответствует верхнему пределу, когда В=10 однако с учетом возможного колебания нагрузок по газу принимают В=6-8.
[5.1.11]
где U – плотность орошения, ;
g – ускорение свободного падения, ;
σ – поверхностное натяжение жидкости, Н/м
Плотность орошения для провальных тарелок, не имеющих переливных устройств, найдем по уравнению:[5.1.12]
[5.1.12]
L – расход поглотителя воды кг/с.
Найдем плотность орошения:
=
Пересчитаем величину коэффициента В, которая была принята равной 8, с учетом действительности скорости газа в колоне:[5.1.13]
[5.1.13]
5.2 Расчет высоты светлого слоя жидкости
Высоту светлого слоя жидкости на тарелке находят из соотношения:[5.2.1]
[5.2.1]
hп – высота газожидкостного барботажного слоя (пены) на тарелке, м.
Рассчитаем критерий Фруда:
Отсюда находим высоту газожидкостного слоя:
м
Газосодержание барботажного слоя находят по уравнению:
Тогда высота светлого слоя жидкости:
м
5.3 Расчет коэффициентов массоотдачи
Для расчета коэффициента массоотдачи, найдем значения коэффициентов молекулярной диффузии по уравнению:[5.3.1]
Коэффициент диффузии компонента газовой фазы А в газе В можно рассчитать, пользуясь полуэмпирической зависимостью [5.3.1]:
, [5.3.1]
Где VA VB – мольные объемы газов А и В соответственно в жидком состоянии при нормальной температуре кипения, /кмоль;
МА и МВ – мольные массы газов А и В соответственно кг/кмоль;
Р – давление в абсорбере, Па;
Т – температура газа, К.
м3/кмоль; м3/кмоль;
Определим Dy для рассматриваемого случая:
Коэффициент диффузии Dx в разбавленных растворах можем вычислить по уравнению [4.4.2]
[5.3.2]
Где М – мольная масса растворителя, кг/кмоль;
Т – температура растворителя, К;
VА – мольный объем поглощаемого компонента, ;
x – поправочный компонент (x = 2.6 для воды);
Рассчитав значения коэффициентов молекулярной диффузии, вычисляем коэффициенты массоотдачи:
м/с
= м/с
Выразим и в выбранной для расчета размерности:
кг/(м2·с)
кг/(м2·с)
Коэффициент массопередачи:
5.4 Расчет числа тарелок абсорбера
Суммарная поверхность тарелок абсорбера находиться из модифицированного уравнения массопередачи[5.4.1]:
м2 [5.4.1]