К теории полета лыжника при прыжках с трамплинаРефераты >> Физкультура и спорт >> К теории полета лыжника при прыжках с трамплина
уравнение (32) приводится к виду Q3+ PQ-q= 0, (39)
где P = B2/3 + C, (40)
q = 2B3/27 - BC/3 + D. (41)
Решение кубического уравнения (39) находится по формуле:
Q = ((q2/4 + P3/27)? + q/2)1/8 - ((q2/4 + P3/27)? - q/2)1/8. (42)
Подставив затем время спуска, вычисленное по формулам (33-42), в выражения (29) и (30), определим координаты места приземления лыжника XL, YL и длину прыжка
L = (XL2 + YL2)?. (43)
Например, при общепринятой позе (руки назад) в полете лыжника массой m=70 кг, когда Cx = 0,72, Cy = 0,61, r = 1,23 кг/м3, S = 0,62 м2, Kx = 3,92Ч10-3 м-1, Ky = 3,32Ч10-3 м-1,
j0 = 60, V0 = 30 м/с.
Согласно (12-17) ta = 0,441C, Va = 28,16 м/с, Xa = 12,8 м, Ya = 0,7 м.
При отсутствии ветpа b=43,7 м. Для трамплина с параметрами Н=56 м, N=102 м, H/N=0,55, L=116 м.
По формулам (29-43) получим Tc = 5,43c, XL = 137,6 м, YL = -76,1 м, L = 157 м.
Результат оказался несколько завышенным. Его можно уточнить, если исходить из более точной аппроксимации траектории спуска, которая следует из КТС (27) при выделении действительной и мнимой частей:
X = Xa + (KygT + f1Se(T) - f2Ce(T)/|K}2b, (44)
Y = Ya - (KxgT - f1Ce(T) - f2Se(T)/|K|2b, (45)
где f1= (Kx2 - Ky2)g/|K|2b + KyVa,f2 = 2KxKyg/|K|2b - KxVa, (46)
Se(T) = exp(-KxbT)sinKybT, Ce(T) = 1 - exp(-KxbT)cosKybT. (47)
После подстановки приведенных выше исходных данных в формулы (44-47) и времени спуска Tc = 5,43C, найденного из кубического уравнения (32), находим XL = 127,4 м, YL = -71,7 м, L = 146 м. Кубическая аппроксимация (29), (30) спуска, давая завышенную длину прыжка, почти не изменяет расчетного параметра прыжка H/N HL/NL=0,553. Поэтому именно ее следует положить в основу расчета времени спуска. При этом можно обойтись без решения (42) уравнения (39), поскольку |Q|3 <<1. Поэтому |Q|~ q/p. (48)
В приведенном выше примере P = 182,7 C2, q = -36,3C3,
B = 17,04C.
Согласно (42) Q = -0,23C, а по формуле (47) Q = -0,20C. Из равенства (38) Tc =5,46C. Ошибка равна 0,55%. Кубическую аппроксимацию можно значительно улучшить с помощью простейших аппроксимантов Паде [1], записать X = Xa - ?KxbVaT2/(1 + fx T) + Va T, (49)
Y = Ya - ?(g - KybVa) T2/(1 + fy T), (50)
fx = 1/3(Kyg + (Kx2 + (Kx2 - Ky2bVa)/KxVa, (51)
fy = 1/3(Kxbg - 2KxKyb2Va)/(g - KybVa). (52)
Первые два члена разложения в степенные ряды функций (49) и (50) даают кубическую аппроксимацию, остальные определенным образом учитывают неучтенные ранее члены разложения более высоких степеней t. Для нашего примера расчет по формулам (49-52), (43) дает:
XL = 122,6 м, YL = -76,7 м, L = 144,6 м.
Последний результат практически совпадает с длиной прыжка, рассчитанной по более точным формулам (44-47).
Из приведенной выше теории, справедливой при любом ветре, следует вывод, что длины прыжков с трамплинов увеличиваются с ростом начальной скорости, аэродинамического качества полета, углов вылета и наклона дорожки приземления и снижения лобового сопротивления. Легко количественно проанализировать влияние этих факторов на длину прыжка с помощью обычного микрокалькулятора.
Список литературы
1. Апресян Л.А. Аппроксиманты Паде. Изв. вузов. Радиофизика, 1979, т. 22, № 6, с. 653-674.
2. Грозин Е.А. Прыжки на лыжах с трамплина. - М.: ФиС, 1971.
3. Евтеев В.П. Периодические решения плоской эллиптической задачи трех тел. - Космические исследования, 1988, т. 26, вып. 5, с. 785-787.
4. Прыжки на лыжах с трамплина. Под ред. Г.Р. Ниренберга. - М.: ФиС, 1964, с. 140-152.
5. Спортивные сооружения /Под ред. Ю.А. Гагина. - М.: ФиС, 1976, с. 162-167.