Информатизация отрасли физическая культура и спорт и экспертные технологииРефераты >> Физкультура и спорт >> Информатизация отрасли физическая культура и спорт и экспертные технологии
Как уже отмечалось, большой вред спортивной науке наносит эмпиризм. Нормы нагрузки, должные нормы, модельные характеристики возводятся в разряд теоретических положений, которыми они, естественно, не являются. Нам трудно согласиться с таким подходом, поскольку при его использовании нарушается принцип, сформулированный еще И.Кантом, об индуктивной невыводимости логических структур, самостоятельности и активности мышления, принцип, имплицитно содержащийся в механике И.Ньютона, принятый А.Эйнштейном и успешно применяемый в современной науке. Наблюдение -это картинка конкретной ситуации, по которой нельзя отделить закономерное от случайного, общее от частного, сущностное от второстепенного. Наблюдение и даже более совершенный метод исследования - эксперимент (гипотетико-дедуктивный метод исследования) могут дать факты и дополнительные "за" или "против" теории. По мнению К.Поппера, эксперимент может фальсифицировать научное положение, но не верифицировать его.
Согласно концепции Т.Куна, длительные периоды развития "нормальной науки" возникают на "основе научных достижений - достижений, которые в течение некоторого времени признаются определенным научным сообществом как основа для его дальнейшей практической деятельности" [9, с.9]. Такие достижения излагались в классических трудах: "Физика" Аристотеля, "Начала" и "Оптика" Ньютона, "Химия" Лавуазье и др. В спортивной науке теории такого уровня еще не появились, и в настоящее время она наполнена главным образом эмпирическими знаниями. Подобное положение вещей отражается на формализации задач, решаемых в спортивной науке. Они имеют вышеперечисленные особенности (большая размерность пространства решений и т.д.) и, согласно определениям Ньюэлла (1969) и Саймона (1973), их можно отнести к неформализуемым. Решение такого класса задач целесообразно осуществлять в экспертных системах [14]. Следует отметить, что нами накоплен определенный опыт решения неформализуемых задач в области спорта. В ряде случаев нам удавалось находить теоретические положения, позволяющие обобщать эмпирические знания (принцип равномерности, который будет изложен ниже, генерация движений антропоморфного механизма и др.).
И последнее замечание. Большинство специфических задач ФКиС обладают еще одной особенностью, которую можно определить как отсутствие фундаментальных зависимостей, связывающих характеристики цели с характеристиками промежуточных и начального состояний. Поясним данное положение на примере. Так, отсутствуют четкие зависимости, связывающие параметры тренировочной нагрузки со спортивным результатом, невозможно даже с большой степенью неопределенности установить связь между показателями физической подготовленности и характеристиками здоровья, работоспособности и т.д. В такой ситуации целесообразно ставить и решать задачи проектирования, т.е. формулировать требования, которым должен отвечать проектируемый объект (план, тест и т.д.), затем каким-то образом генерировать этот объект и проверять на соответствие его этим требованиям. Данный подход использовался нами при разработке экспертных систем для планирования тренировочного процесса, теста для оценки физической подготовленности и в других случаях и дал положительные результаты.
Мы хотим отметить, что вопрос о состоянии спортивной науки требует отдельного рассмотрения и не является темой настоящей статьи.
В данном случае нам важно не доказать что-либо, а обозначить нашу позицию по данному вопросу, поскольку от видения ситуации в спортивной науке зависят многие аспекты информатизации отрасли (подходы к формализации задач, возникающих в сфере ФКиС, концепция информатизации и т.д.).
Как уже отмечалось выше, одним из наиболее перспективных подходов при разработке компьютерных систем для решения специфических для ФКиС задач является, на наш взгляд, экспертная технология. Под экспертной технологией мы понимаем системы искусственного интеллекта и другие компьютерные системы, в частности экспертные, в состав которых входит компонент, называемый базой знаний, включающей в себя в формализованной форме знания и опыт специалистов.
Экспертные системы
Экспертные системы - это достижение в области искусственного интеллекта, которое может приобрести большое практическое значение.
Ф.Хейес-Рот [25] пишет, что на международной объединенной конференции по искусственному интеллекту в 1977 г. Э.Фейгенбаум высказал основополагающие соображения об экспертных системах. Рассмотрим их.
Интеллектуальность системы определяется в первую очередь качеством заложенных в нее знаний из предметной области, а не формализмами и схемами вывода, которые она использует. Эта концепция была принята учеными, работающими в области искусственного интеллекта. Она дала развитие специализированным программным системам, каждая из которых является экспертом в узкой области знаний и называется экспертной системой.
Специальная группа по экспертным системам Британского компьютерного сообщества определяет экспертные системы как результат создания в компьютере основанной на знаниях компоненты, соответствующей навыку эксперта в такой форме, которая позволяет системе дать разумный совет или принять разумное решение о функции обработки данных. Дополнительной характеристикой является способность системы объяснять свою линию рассуждении в виде, непосредственно понятном тому, кто задал вопрос.
Экспертным системам свойственны следующие характерные черты [17,22 и др.].
1. Экспертная система ограничена сферой экспертизы и, следовательно, не имеет общих знаний. Решения на уровне здравого смысла могут приниматься только в ограниченной области знаний.
2. По качеству и эффективности принимаемых решений экспертная система не уступает человеку-эксперту.
3. Экспертная система способна работать с сомнительными данными.
4. Решения экспертной системы понятны пользователю, поскольку могут быть объяснены.
5. Экспертная система способна наращивать знания.
6. На выходе экспертной системы выдается четкий совет, рекомендация, план и т.п.
7. Факты и механизмы вывода в экспертной системе отделены друг от друга.
В состав экспертной системы входят следующие компоненты: 1) база знаний; 2) машина вывода; 3) модуль извлечения знаний; 4) система объяснения. Разными авторами включаются также рабочая память, хранящая данные (база данных);
лингвистический процессор, осуществляющий диалоговое взаимодействие с пользователем (экспертом) на естественном для него языке; компонента приобретения знаний; компонента обеспечения непротиворечивости и т.д. Сердцевину экспертной системы составляет база знаний, которая накапливается в процессе ее построения. Знания выражены в явном виде и организованы так, чтобы упростить принятие решений [14,17 и др.]. База знаний сама по себе представляет ценность. Она может быть использована для разных целей:
а) обучения и тренировки; б) накопления высококачественного опыта; в) прогнозирования; г) создания институциональной памяти.