Вертикальная механическая работа в аспекте оценки техники бегаРефераты >> Физкультура и спорт >> Вертикальная механическая работа в аспекте оценки техники бега
Оценка технического уровня бегунов обычно связывается с рядом биомеханических показателей, в частности коррелирующих со скоростью бега. При этом подразумевается, что если лучшие бегуны отличаются определенными величинами показателей, то это связано с преимуществами их техники. Например, такой подход использовался при изучении техники бега на 5 км у стайеров разной квалификации, но с одинаковыми росто-весовыми характеристиками и величинами максимального потребления кислорода [13]. Было установлено, что бегуны более высокого уровня острее отталкивались от опоры и механическая работа, затраченная ими на вертикальные перемещения общего центра масс тела (о.ц.м.), была вдвое меньше. Поэтому их средний результат был почти на 1 мин 43 с лучше за счет более длинного шага. Из этого, казалось бы, следует, что более квалифицированные стайеры владеют такой техникой бега, которая позволяет им экономить на вертикальной работе и поэтому показывать лучшие результаты.
Однако в ряде экспериментальных работ прослеживается общая закономерность: с увеличением скорости передвижения от максимальной при обычной ходьбе к спортивной и далее к бегу с выходом на максимальную скорость вертикальная работа постоянно уменьшается [1-3, 5, 8-11]. Отсюда можно сделать вывод о том, что подобное изменение вертикальной работы является не причиной, а следствием повышения скорости шагательных перемещений человека. И если спортсмены более высокой квалификации выполняют меньшую вертикальную работу, то это еще не признак более совершенной техники их бега. Поэтому в нашей работе была поставлена задача - проверить это предположение, исследуя механизм передвижения при беге.
Методика. В экспериментальной части работы приняли участие 65 спортсменов-спринтеров квалификации от III разряда до мастеров спорта международ ного класса. Их рост составил 176,3±5,3 см, масса тела - 69,2±7,4 кг, длина ног - 91,5±3,9 см. Они пробегали 30 м с ходу с максимальной скоростью. Скорость бега регистрировалась фотодиодными парами, длина шагов - по отпечаткам шипов, опорные реакции - на тензоплатформе ПД-3 с собственной частотой 300 Гц. Затем отбиралось по одной лучшей попытке каждого бегуна, всего обработано 65 попыток.
По полученным исходным данным рассчитывались перемещения и скорость о.ц.м., механическая энергия и внешняя работа по общепринятой методике [12].
Результаты и их обсуждение . Средние значения скорости бега, длины и частоты шагов были равны соответственно 8,31±1,07 м/с, 2,12±0,18 м и 3,9±0,46 ш/с. Согласно полученным результатам с ростом скорости бега достоверно уменьшался размах вертикальных колебаний о.ц.м., измеряемый от низшего положения в фазе амортизации до высшего в периоде полета:
Sv = 14,25 - 0,923V(±1,26), r = -0,62 (I),
где Sv - вертикальное перемещение о.ц.м. (см), V - скорость бега (м/с), r - коэффициент корреляции.
Естественно, это приводит к снижению вертикальной механической работы:
Wv = 0,927 - 0,071V(±0,058), r = -0,80 (2),
где Wv - вертикальная слагающая положительной внешней работы (Дж/кг/м).
Снижение вертикальной работы происходило при уменьшении угла вылета: a = 12,48 - 0,941V(±0,57), r = -0,87 (3),
где a - угол вылета о.ц.м. (в градусах).
Такие изменения сопровождались ростом продольной работы:
Wf = -0,018 + 0,178V(±0,237), r = 0,63 (4),
где Wf - продольная слагающая положительной внешней работы (Дж/кг/м).
Поскольку продольная работа увеличивается быстрее, чем падает вертикальная, превышая последнюю почти в несколько раз, то внешняя работа также растет с увеличением скорости бега:
Wext = 0,910 + 0,107V(±0,232), r = 0,44 (5),
где Wext - положительная внешняя работа (Дж/кг/м).
Соотношение продольной и внешней работы, которое можно трактовать как эффективность механической работы, затраченной на перемещение о.ц.м., показывает его рост с увеличением скорости бега:
К = 0,361 + 0,053V(±0,046), r = 0,78 (6),
где К - отношение продольной слагающей к внешней работе.
Таким образом, подтверждается сделанное ранее предположение о том, что с ростом скорости бега снижается вертикальная работа и повышается эффективность бега [3, 10-12]. Эти данные были получены на группах испытуемых, каждый из которых бежал с различными скоростями. При этом все попытки сводились в один массив и подвергались статистическому анализу. Поэтому полученные данные можно трактовать как смешанный внутри- и межиндивидуальный анализ, показывающий, как изменяются показатели бега при повышении скорости передвижения одного и того же испытуемого и так ли это происходит у других спортсменов. Наши данные показывают, чем характеризуется бег более быстрых спортсменов, что позволяет с помощью уравнений регрессий проверять межквалификационные различия.
Итак, можно заключить, что более квалифицированные бегуны выполняют меньшую вертикальную работу. Отсюда опять напрашивается вывод о наличии у них более совершенной техники бега. Так ли это? Опять обратимся к экспериментальным фактам.
Многочисленными исследованиями установлено, что с повышением скорости бега уменьшается время опоры и его составляющих - фаз торможения (амортизации) и отталкивания . Такое наблюдается как при внутри- и межиндивидуальном анализе [1-3, 6, 7], так и при смешанном [9-11]. Уменьшение времени опоры неизбежно, поскольку продольное перемещение о.ц.м. в период опоры, несмотря на рост скорости бега, практически постоянно для одного и того же индивидуума [11]. Известно, что со скоростью бега растут силы инерции, последние требуют увеличения мышечных усилий, направленных против них [1, 12]. Однако согласно смешанному и внутрииндивидуальному анализу сокращение периода опоры вызывает уменьшение импульса вертикальной силы, приложенной к о.ц.м., несмотря на некоторый прирост средней величины вертикальной силы [1, 2, 6, 9, 12]. Эта закономерность подтверждается нашим межиндивидуальным анализом:
Iv = 80,16 - 3, 218V(±8,2), r = -0,49 (7),
где Iv - импульс вертикальной составляющей реакции опоры в фазе отталкивания (Нс);
Pv = 66,6 + 5,21V(±13,7), r = 0,47 (8),
где Pv - средняя величина вертикальной составляющей реакции опоры в фазе отталкивания (кГс). Обе зависимости подтверждают ранее полученные данные межиндиви дуального анализа [3, 7].
Теперь для наглядности проиллюстрируем изменения обоих показателей при росте скорости бега от 5 до 10 м/с, подставляя значения скорости в уравнения 7 и 8. Так, если при этом средняя вертикальная сила растет на 28%, то сокращение времени отталкивания приводит к падению импульса вертикальной силы на 33,5%. В то же время продольная составляющая кинетической энергии тела бегуна массой 70 кг возрастет в четыре раза. Понятно, что импульс вертикальных усилий бегуна - единственная причина, способная повлиять на изменение кинетической энергии тела, перемещая его в вертикальном направлении. Такое несоразмерное изменение обеих характеристик и приводит к автоматическому уменьшению вертикальных колебаний о.ц.м. Так же изменяется и угол вылета о.ц.м., поскольку уменьшение вертикального импульса означает падение вертикальной скорости вылета о.ц.м.