Аэробная и анаэробная производительность, роль эмоций в спорте, предстартовое состояниеРефераты >> Физкультура и спорт >> Аэробная и анаэробная производительность, роль эмоций в спорте, предстартовое состояние
Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы. Простое уравнение для оценки энергии, образующейся за счет анаэробного гликолиза, имеет вид: энергия анаэробного гликолиза (кал/кг веса тела) = содержанию молочной кислоты в крови (г/л) * 0,76 * 222, где содержание молочной кислоты определяется как разница между наибольшей концентрацией ее на 4-5-й мин после работы (пик содержания молочной кислоты в крови) и концентрацией в условиях покоя; величина 0,76 - это константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 222 - калорический эквивалент 1 г продукции молочной кислоты.
Максимальная емкость лактацидного компонента анаэробной энергии у молодых нетренированных мужчин составляет около 200 кал/кг веса тела, что соответствует максимальной концентрации молочной кислоты в крови около 120 мг% (13 ммоль/л). У выдающихся представителей скоростно-силовых видов спорта максимальная концентрация молочной кислоты в крови может достигать 250-300 мг%, что соответствует максимальной лактацидной (гликолитической) емкости 400-500 кал/кг веса тела.
Такая высокая лактацидная емкость обусловлена рядом причин. Прежде всего, спортсмены способны развивать более высокую мощность работы и поддерживать ее более продолжительно, чем нетренированные люди. Это, в частности, обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых мышечных волокон, для которых характерна высокая гликолитическая способность. Повышенное содержание таких волокон в мышцах высококвалифицированных спортсменов - представителей скоростно-силовых видов спорта - является одним из факторов, обеспечивающих высокую гликолитическую мощность и емкость. Кроме того, в процессе тренировочных занятий, особенно с применением повторно-интервальных упражнений анаэробной мощности, по-видимому, развиваются механизмы, которые позволяют спортсменам "переносить" ("терпеть") более высокую концентрацию молочной кислоты (и соответственно более низкие значения рН) в крови и других жидкостях тела, поддерживая высокую спортивную работоспособность. Особенно это характерно для бегунов на средние дистанции.
Силовые и скоростно-силовые тренировки вызывают определенные биохимические изменения в тренируемых мышцах. Хотя содержание АТФ и КрФ в них несколько выше, чем в нетренируемых (на 20-30%), оно не имеет большого энергетического значения. Более существенно повышение активности ферментов, определяющих скорость оборота (расщепления и ресинтеза) фосфагенов (АТФ, АДФ, АМФ, КрФ), в частности миокиназы и креатин" фосфокиназы (Яковлев Н. Н.).
Максимальное потребление кислорода. Аэробные возможности человека определяются, прежде всего, максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше абсолютная мощность максимальной аэробной нагрузки. Кроме того, чем выше МПК, тем относительно легче и потому длительнее выполнение аэробной работы.
Например, спортсмены А и Б должны бежать с одинаковой скоростью, которая требует у обоих одинакового потребления кислорода - 4 л/мин. У спортсмена А МПК. равно 5 л/мин и потому дистанционное потребление О2 составляет 80% от его МПК. У спортсмена Б МПК равно 4,4 л/мин н, следовательно, дистанционное потребление О2 достигает 90% от его МПК. Соответственно для спортсмена А относительная физиологическая нагрузка при таком беге ниже (работа "легче"), и потому он может поддерживать заданную скорость бега в течение более продолжительного времени, чем спортсмен Б.
Таким образом, чем выше МПК у спортсмена, тем более высокую скорость он может поддерживать на дистанции, тем, следовательно, выше (при прочих равных условиях) его спортивный результат в упражнениях, требующих проявления выносливости. Чем выше МПК, тем больше аэробная работоспособность (выносливость), т.е. тем больший объем работы аэробного Характера способен выполнить человек. Причем эта зависимость выносливости от МПК проявляется (в некоторых пределах) тем больше, чем меньше относительная мощность аэробной нагрузки.
Отсюда понятно, почему в видах спорта, требующих проявления выносливости, МПК у спортсменов выше, чем у представителей других видов спорта, а тем более чем у нетренированных людей того же возраста. Если у нетренированных мужчин 20-30 лет МПК в среднем равно 3-3,5 л/мин (или 45- 50 мл/кг * мин), то у высококвалифицированных бегунов-стайеров и лыжников оно достигает 5-6 л/мин (или более 80 мл/кг * мин). У нетренированных женщин МПК равно в среднем 2-2,5 л/мин (или 35-40 мл/кг * мин), а у лыжниц около 4 л/мин (или более 70 мл/кг * мин).
Абсолютные показатели МПК (л О2/мин) находятся в прямой связи с размерами (весом) тела. Поэтому наиболее высокие абсолютные показатели МПК имеют гребцы, пловцы, велосипедисты, конькобежцы. В этих видах спорта наибольшее значение для физиологической оценки данного качества имеют абсолютные показатели МПК.
Относительные показатели МПК (мл О2/кг * мин) у высококвалифицированных спортсменов находятся в обратной зависимости от веса тела. При беге и ходьбе выполняется значительная работа по вертикальному перемещению массы тела и, следовательно, при прочих равных условиях (одинаковой скорости передвижения) чем больше вес спортсмена, тем больше совершаемая им работа (потребление О2). Поэтому бегуны на длинные дистанции, как правило, имеют относительно небольшой вес тела (прежде всего за счет минимального количества жировой ткани и относительно небольшого веса костного скелета). Если у нетренированных мужчин 18-25 лет жировая ткань составляет 15- 17% веса тела, то у выдающихся стайеров - лишь 6- 7% Наибольшие относительные показатели МПК обнаруживаются у бегунов на длинные дистанции и лыжников, наименьшие - у гребцов. В таких видах спорта, как легкоатлетический бег, спортивная ходьба, лыжные гонки, максимальные аэробные возможности спортсмена правильнее оценивать по относительному МПК.
Уровень МПК зависит от максимальных возможностей двух функциональных систем: 1) кислородтранспортной системы, абсорбирующей кислород из окружающего воздуха и транспортирующей его к работающим мышцам и другим активным органам и тканям тела; 2) системы утилизации кислорода, т. е. мышечной системы, экстрагирующей и утилизирующей доставляемый кровью кислород. У спортсменов, имеющих высокие показатели МПК, обе эти системы обладают большими функциональными возможностями.
2. Физиологическая характеристика состояний организма при спортивной деятельности. Предстартовые состояния
При выполнении тренировочного или соревновательного упражнения в функциональном состоянии спортсмена происходят значительные изменения. В непрерывной динамике этих изменений можно выделить три основных периода: предстартовый, основной (рабочий) и восстановительный.
Предстартовое состояние характеризуется функциональными изменениями, предшествующими началу работы (выполнению упражнения).