Общая теория относительностиРефераты >> Естествознание >> Общая теория относительности
Еще в 1918 году Эйнштейн предсказал на основе ОТО существование гравитационного излучения. Хорошо известно, что электрически заряженные частицы, будучи ускоренными, излучают электромагнитные волны. Аналогично, массивные тела, двигаясь с ускорением, излучают гравитационные волны — рябь геометрии пространства, распространяющуюся тоже со скоростью света.
Следует заметить, что аналогия эта неполна (впрочем, как практически и всякая иная). Одно из отличий между электромагнитными и гравитационными волнами, имеющее довольно существенный характер, состоит в следующем. В отличие от случая электромагнитного поля плотность энергии гравитационного поля, гравитационной волны локально, в данной точке, можно всегда обратить в ноль подходящим выбором системы координат. В свое время, лет 60 — 70 назад, это обстоятельство рассматривалось как серьезная трудность теории. Затем, однако, смысл его был прояснен, и проблема была снята. Тем не менее, по-видимому, стоит остановиться на этом вопросе в данной, по существу научно-популярной, статье по следующей причине. В последние годы в нашей стране в некоторых публикациях, претендующих на серьезный научный характер, а также в научно-популярной литературе появились утверждения о том, что возможность обращения в ноль локальной плотности энергии гравитационного поля является коренным, принципиальным дефектом ОТО.
На самом же деле ничего страшного в этом факте нет. Он — прямое следствие принципа эквивалентности. Действительно, как уже упоминалось выше, переходя в систему, связанную со свободно падающим лифтом, мы обращаем в ноль напряженность гравитационного поля. Вполне естественно, что в этой системе равна нулю и плотность энергии гравитационного поля. (Это соображение принадлежит С.И. Литерату, учителю средней школы N 130 г. Новосибирска.)
Отсюда, однако, вовсе не следует, что гравитационные волны — всего лишь игра ума, математическая абстракция. Это в принципе наблюдаемое физическое явление. Так, например, стержень, находящийся в поле гравитационной волны, испытывает деформации, меняющиеся с ее частотой. Увы, оговорка «в принципе» отнюдь не случайна: масса любого объекта на Земле настолько мала, а движение его столь медленно, что генерация гравитационного излучения в земных условиях совершенно ничтожна, не видно сколько-нибудь реального способа зарегистрировать такое излучение. Существует ряд проектов создания детекторов гравитационного излучения от космических объектов. Однако и здесь реальных результатов до сих пор нет.
Следует также сказать, что, хотя плотность энергии гравитационного поля в любой точке можно по своему желанию обратить в ноль выбором подходящей системы координат, полная энергия этого поля во всем объеме, полный его импульс имеют совершенно реальный физический смысл (конечно, если поле достаточно быстро убывает на бесконечности). Столь же наблюдаемой, хорошо определенной величиной является и потеря энергии системой за счет гравитационного излучения.
Все это имеет самое прямое отношение к пульсару PSR 1913+16. Эта система также должна излучать гравитационные волны. Их энергия в данном случае огромна, она сравнима с полной энергией излучения Солнца. Впрочем, даже этого недостаточно, чтобы непосредственно зарегистрировать эти волны на Земле. Однако энергия гравитационных волн может черпаться только из энергии орбитального движения звезд. Падение последней приводит к уменьшению расстояния между звездами. Так вот, тщательные измерения импульсов радиоизлучения от пульсара PSR 1913+16 показали, что расстояние между компонентами этой двойной звезды уменьшается на несколько метров в год в полном согласии с предсказанием ОТО. Любопытно, что потеря энергии двойной звездой за счет гравитационного излучения была впервые рассчитана Ландау и Лифшицем, они поместили этот расчет в качестве учебной задачи в первое издание своей замечательной книги —Теория поля», которое вышло в 1941 году.
1.5 Гравитационные линзы и коричневые карлики
И наконец, сюжет, еще более свежий, чем пульсар PSR 1913+16. Он тесно связан, однако, с идеей, возникшей еще на заре ОТО. В 1919 году Эддингтон и Лодж независимо заметили, что, поскольку звезда отклоняет световые лучи, она может рассматриваться как своеобразная гравитационная линза. Такая линза смещает видимое изображение звезды-источника по отношению к ее истинному положению.
Первая наивная оценка может привести к выводу о полной безнадежности наблюдения эффекта. Из простых соображений размерности можно было бы заключить, что изображение окажется сдвинутым на угол порядка rg /d, где rg — гравитационный радиус линзы, а d — характерное расстояние в задаче. Даже если взять в качестве линзы скопление, состоящее из 104 звезд, а для расстояния принять оценку d~10 световых лет, то и тогда этот угол составил бы всего 10-10 радиан. Разрешение подобных углов практически невозможно.
С другой стороны, для θ справедлива, очевидно, формула (8). Таким образом,
И наконец, интересующий нас угол составляет
Изображение источника в виде окружности (ее принято называть кольцом Эйнштейна), создаваемое гравитационной линзой при аксиально-симметричном расположении, реально наблюдалось. Сейчас известно