Получение бактериальных удобрений для сельского хозяйстваРефераты >> Ботаника и сельское хоз-во >> Получение бактериальных удобрений для сельского хозяйства
Фосфобактерин - бактериальное удобрение, содержащее споры микроорганизма Bacillus megaterium var. phosphaticum. Представляет собой порошок светло-серого или желтоватого цвета.
Бактерии обладают способностью превращать сложные фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды и т.д.) и трудноусвояемые минеральные фосфаты в доступную для растений форму. Кроме этого бактерии вырабатывают биологически активные вещества (тиамин, пиридоксин, биотин, пантотеновую и никотиновую кислоты и др.), стимулирующие рост растения. Фосфобактерин относится к числу препаратов со стимулирующим эффектом.
Bacillus megaterium var. phosphaticum представляют собой мелкие, грамположительные аэробные спорообразующие палочки размером 2*6 мкм. Клетки содержат значительное количество соединений фосфора. В ранней стадии развития это подвижные одиночные палочки, при старении образуют эндоспоры, локализующиеся в одном из концов клетки. В силу вышеизложенного технология выращивания сводится к получению спор.
В целом производство фосфобактерина похоже на производство азотобактерина и препаратов клубеньковых бактерий. Состав питательной среды в процентах: кукурузный экстракт -1.8, меласса - 1.5, сульфат аммония - 0.1, мел - 1, остальное - вода. Культивирование ведется глубинным методом в строго асептических условиях при постоянном перемешивании и принудительной аэрации до стадии образования спор. Основные параметры проведения процесса: температура 28-30оС, рН 6.5-7.5, длительность культивирования 1.5-2 суток. Полученную в ходе культивирования биомассу клеток отделяют центрифугированием и высушивают в распылительной сушилке при температуре 65-75оС до остаточной влажности 2-3%. Высушенные споры смешивают с наполнителем. Готовый препарат должен содержать не менее 8 млрд. клеток в 1 г. Расфасовывают препарат в полиэтиленовые пакеты по 50-500 г. В отличие от нитрагина и азотобактерина фосфобактерин обладает большей устойчивостью при хранении. Фосфобактерин рекомендуют применять на черноземных почвах, которые содержат наиболее значительное количество фосфороорганических соединений. Необходим для повышения урожайности зерновых, картофеля, сахарной свеклы и др. сельскохозяйственных растений. Семена обрабатывают смесью сухого фосфобактерина с наполнителем (золой, почвой и др.) в соотношении 1:40. На 1 гектарную порцию требуется 5 г препарата и 200 г наполнителя. Клубни картофеля равномерно увлажняют суспензией спор, приготовленной из расчета 15 г препарата на 15 л воды. Урожай при этом повышается на 10%. Кроме вышеупомянутых, достаточно большое распространение получил также биопрепарат АМБ (аутохтонная микрофлора Б), представляющий собой готовое сообщество микроорганизмов, нативную микрофлору почвы, способную разлагать органические вещества, высвобождая газообразный аммиак – то есть вести процесс нитрификации или аммонификации. Препарат АМБ применяется в тех случаях, когда почва обеднена и не имеет достаточного количества нативных микроорганизмов для проведения сельскохозяйственной деятельности. Кроме АМБ известен также вид препаратов ЭМ, который отличается от АМБ тем, что содержит не все почвенные бактерии подряд, а только их "элитных" представителей. В настоящее время ЭМ-препараты представляются одним из наиболее прогрессивных направлений развития биопрепаратов сельского хозяйства.
В общем, схему производства бактериальных удобрений можно свести к следующим стадиям:
1) Подбор чистой культуры бактерий и внесение ее в благоприятную среду.
2) Культивирование со значительным наращиванием биомассы.
3) Выделение и выпуск готового продукта.
Глава 2. Процесс приготовления бактериального удобрения
Рассмотрим процесс приготовления бактериального удобрения более подробно. Весь цикл состоит из 5 этапов, каждый из которых, в свою очередь, подразделяется на несколько шагов:
Схема процесса производства бактериальных удобрений в общем виде
I) Приготовление инокулята:
1) Подбор штамма бактерий, обладающего требуемыми свойствами (достаточная скорость роста, обязательно устойчивость к сухим условиям, и ряд свойств, необходимых для конечного продукта)
2) Засев на твердую питательную среду. Производится в лабораторных
3) условиях при соблюдении стерильности. Требуется для первоначального наращивания биомассы.
4) Пересев на жидкую питательную среду. Также проводится в лабораторных условиях. Необходим для получения количества биомассы, достаточного для помещения в ферментер большого объема.
II) Приготовление среды:
Этот процесс идет параллельно с приготовлением инокулята, питательная среда также используется для предварительного наращивания биомассы бактерий. Состав среды подбирается индивидуально для каждого вида бактерий. Для увеличения эффективности процесса ферментации зачастую требуется достаточно трудоемкий предварительный этап подбора оптимального состава питательной среды.
1) Подбор оптимального состава питательной среды, если требуется (при модернизации производства, при использовании нового штамма бактерий и т.д.).
2) Приготовление требуемого количества среды.
3) Стерилизация среды.
III) Ферментация:
Процесс ферментации проводится как правило глубинными методами в таре, предназначенной для конечного продукта, в помещениях, обеспеченных оптимальными для процесса условиями; реже — в ферментерах. Условия культивирования строго асептические, температурный режим как правило 26-30°С, pH среды нейтральная (6,5 — 7,5). Продолжительность культивирования зависит от требуемого количества биомассы, вида микроорганизма и других условий, в общем подбирается экспериментальным путем.
IV) Сушка:
Существует несколько методов сушки, применяемых в производстве бактериальных удобрений — сублимационная сушка, применение распылительных, ленточных и др. сушилок. Выбор метода сушки и условий процесса (температурный режим, требуемая остаточная влажность) определяются, исходя из эксплуатационных требований получаемого удобрения и того, какие микроорганизмы взяты для производства.
V) Фасовка и выпуск продукта:
Зачастую, стадия фасовки готового удобрения мало выделяется среди предшествующих стадий производства. Это связано с тем, что во многих случаях культивирование микроорганизмов производится непосредственно в товарной упаковке (например, ризоторфин — в ПЭ пакетах (предварительно в них расфасована подготовленная среда - торф), азотобактерин — в стеклянных бутылях и т.д.). Во многом это связано с тем, что срок хранения готового продукта очень недолог, поэтому экономически наиболее приемлема скорейшая его реализация. В других случаях производится сортировка, отбор, фасовка и упаковка готового продукта, для чего может потребоваться введение отдельной производственной линии.
Заключение
В заключение рассмотрим более подробно экономическую целесообразность и обоснованность внедрения производства бактериальных удобрений. По результатам их работы было установлено, что при применении азотфиксирующих бактериальных препаратов рост продуктивности картофеля за 2 года составил от 7% до 43% в зависимости от разведения препарата и сочетания его с другими бакудобрениями (конкретно были исследования силикатные бактерии). Кроме того, была обнаружена зависимость эффективности препарата от типа почвы, в которую он был внесен и глубины заделки саженцев. Немаловажным экономическим фактором так же является и то, что наибольшую эффективность препарат продемонстрировал при среднем разведении (эксперимент проводился при разведениях от 1:200 до 1:1000, при этом наивысший результат был достигнут при разведении 1:400, далее происходило снижение эффективности). Судя по всему, это связано со значительным накоплением в почве продуктов жизнедеятельности бактерий, которые нейтрализуют положительный эффект от их применения.