Наука о сложных системахРефераты >> Естествознание >> Наука о сложных системах
Введенное чуть позже в кибернетике понятие самообучающихся машин аналогично воспроизводству живых систем. И то, и другое есть созидание себя (в себе и в другом), возможное в отношении машин, как и живых систем. Обучение онтогенетически есть то же, что и самовоспроизводство филогенетически.
Как бы не протекал процесс воспроизводства, «это — динамический процесс, включающий какие-то силы или их эквиваленты. Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества вируса при некоторых обстоятельствах излучают инфракрасные колебания, которые обладают способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот» (Там же.- С. 281-282).
Такова гипотеза воспроизводства Винера, которая позволяет предложить единый механизм самовоспроизводства для живых и неживых систем.
Современные ЭВМ значительно превосходят те, которые появились на заре кибернетики. Еще 10 лет назад специалисты сомневались, что шахматный компьютер когда-нибудь сможет обыграть приличного шахматиста, но теперь он почти на равных сражается с чемпионом мира. То, что машина чуть было не выиграла у Каспарова за счет громадной скорости перебора вариантов (100 млн. в сек. против двух у человека) остро ставит вопрос не только о возможностях ЭВМ, но и о том, что такое человеческий разум.
Предполагалось два десятилетия назад, что ЭВМ будут с годами все более мощными и массивными, но вопреки прогнозам крупнейших ученых, были созданы персональные компьютеры, которые стали повсеместным атрибутом нашей жизни. В перспективе нас ждет всеобщая компьютеризация и создание человекоподобных роботов.
Надо, впрочем, иметь в виду, что человек не только логически мыслящее существо, но и творческое, и эта способность — результат всей предшествующей эволюции. Если же будут построены не просто человекоподобные роботы, но и превосходящие его по уму, то это повод не только для радости, но и для беспокойства, связанного как с роботизацией самого человека, так и с проблемой возможного «бунта машин», выхода их из-под контроля людей и даже порабощения ими человека. Конечно, в XX веке это не более, чем далекая от реальности фантастика.
Модели мира
Благодаря кибернетике и созданию ЭВМ одним из основных способов познания, наравне с наблюдением и экспериментом, стал метод моделирования. Применяемые модели становятся все более масштабными: от моделей функционирования предприятия и экономической отрасли до комплексных моделей управления биогеоценозами, эколого-экономических моделей рационального природопользования в пределах целых регионов, до глобальных моделей.
В 1972 году на основе метода «системной динамики» Дж. Форрестера были построены первые так называемые «модели мира», нацеленные на выработку сценариев развития всего человечества в его взаимоотношениях с биосферой. Их недостатки заключались в чрезмерно высокой степени обобщения переменных, характеризующих процессы, протекающие в мире; отсутствии данных об особенностях и традициях различных культур и т. д. Однако, это оказалось очень многообещающим направлением. Постепенно указанные недостатки преодолевались в процессе создания последующих глобальных моделей, которые принимали все более конструктивный характер, ориентируясь на рассмотрение вопросов улучшения существующего эколого-экономического положения на планете.
М. Месаровичем и Э. Пестелем были построены глобальные модели на основе теории иерархических систем, а В. Леонтьевым — на основе разработанного им в экономике метода «затраты — выпуск». Дальнейший прогресс в глобальном моделировании ожидается на путях построения моделей, все более адекватных реальности, сочетающих в себе глобальный, региональные и локальные моменты.
Споры относительно эффективности применения кибернетических моделей в глобальных исследованиях не умолкают и поныне. Создатель метода системной динамики Дж. Форрестер выдвинул так называемый «контринтуитивный принцип», в соответствии с которым сложные системы функционируют таким образом, что это принципиально противоречит человеческой интуиции, и таким образом машины могут дать более точный прогноз их поведения, чем человек. Другие исследователи считают, что «контринтуитивное поведение» свойственно тем системам, которые находятся в критической ситуации.
Трудности формализации многих важных данных, необходимых для построения глобальных моделей, а также ряд других моментов свидетельствуют о том, что значение машинного моделирования не следует абсолютизировать. Моделирование может принести наибольшую пользу в том случае, если будет сочетаться с другими видами исследований.
Простираясь на изучение все более сложных систем метод моделирования становится необходимым средством как познания, так и преобразования действительности. В настоящее время можно говорить как об одной из основных о преобразовательной функции моделирования, выполняя которую оно вносит прямой вклад в оптимизацию сложных систем. Преобразовательная функция моделирования способствует уточнению целей и средств реконструкции реальности. Свойственная моделированию трансляционная функция способствует синтезу знаний — задаче, имеющей первостепенное значение на современном этапе изучения мира.
Прогресс в области моделирования следует ожидать не на пути противопоставления одних типов моделей другим, а на основе их синтеза. Универсальный характер моделирования на ЭВМ дает возможность синтеза самых разнообразных знаний, а свойственный моделированию на ЭВМ функциональный подход служит целям управления сложными системами.
Список литературы
1. Винер Н. Кибернетика. М., 1968.
2. Кендрью Дж. Нить жизни. М., 1968.
3. Эшби У. Р. Конструкция мозга. М., 1964.
4. Эшби У. Р. Введение в кибернетику. М., 1959.