Модели развития Вселенной
Рефераты >> Естествознание >> Модели развития Вселенной

б) Лептонная эра. Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем «реликтовыми». Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

в) Фотонная эра или эра излучения. На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er . Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно «устают» со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em). Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er=Em). Кончается эра излучения и вместе с этим период «большого взрыва». Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

«Большой взрыв» продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время «большого взрыва». Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

После «большого взрыва» наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения «большого взрыва» (приблизительно 300 000 лет) до наших дней. По сравнению с периодом «большим взрыва» её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.

2. Рождение сверхгалактик и скоплений галактик.

Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко - альфа-частицы. (Не надо забывать, что фотонов было в миллиард раз больше чем протонов и электронов). В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течение эры излучения гамма-фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что к каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

С возникновением атомов водорода начинается звездная эра - эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

3. Рождение галактик.

Колоссальные водородные сгущения - зародыши сверх галактик и скоплений галактик - медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.


Страница: