Концепция естествознания
Рефераты >> Естествознание >> Концепция естествознания

В понимании вопроса о происхождении жизни понятия «нуклеиновая кислота» и «белок» можно заменить понятиями «информация, содержащая инструкцию» и «функция». Тогда вопрос «что первично?» становится абсурдным, так как не может осуществиться определенная функция, если нет информации. А «информация» приобретает смысл только через функцию, которую она кодирует. Поэтому в живой природе естественный отбор направлен в конечном счете к сохранению полезной для организма функции.

«Такую систему (информация — функция), — пишет М. Эйген, — можно сравнить с замкнутым узлом. Хотя и очевидно, что нить, из которой образован узел, где-то должна начинаться, начальная точка теряет свое значение, поскольку узел замкнут. Взаимоотношения нуклеиновых кислот и белков соответствуют сложной иерархии «замкнутого узла».

В процессе развития пробионтов зародилась способность передачи информации. Она обеспечила огромные преимущества своим носителям — сложным макромолекулярным комплексам. В дальнейшем эта способность приводит к образованию огромной информационной насыщенности живой клетки, что обеспечивается тонкими механизмами, сформировавшимися в процессе эволюции. При этом запись информации происходит на атомном уровне. В исключительно малом пространстве (например, диаметр сперматозоида составляет около 0,1 мм) может быть записано огромное количество информации. Эта информация включает мельчайшие подробности, даже такие, по словам Дж. Уотсона, как «присущая нам способность развлекать окружающих».

Основные черты, приобретенные в результате каким-либо организмом в результате долгой предшествующей эволюции, записаны в его наследственной программе. Издавно известно, что основная часть генетической информации содержится в тонких нитевидных телах — хромосомах, имеющихся внутри клетки. В 1950-е годы было установлено, что важнейшая часть хромосом состоит из ДНК. По-видимому, генетическим материалом всех живых организмов является ДНК, за исключением некоторых вирусов, которые содержат исходную РНК. Не известны случаи, когда бы генетическим материалом служили иные молекулы, кроме нуклеиновых кислот.

Рентгеноструктурные исследования М. Уилкинса, и особенно работа Дж. Уотсона и Ф. Крика, раскрыли структуру ДНК. Она представляет собой длинную цепь повторяющихся последовательностей: сахар-фосфат-сахар-фосфат-сахар-фосфат . и так далее. К каждому сахару (называемому еще дезоксирибозой) присоединена плоская циклическая группа азотосодержащего соединения, называемого азотным основанием. Это пурины, имеющие двойное углеродно-азотное кольцо, и пиримидины, имеющее одно такое кольцо. Чаще всего встречаются пурины — аденин (А) и гуанин (Г) — и пиримидины — тимин (Т) и урацил (У). Генетическая информация передается посредством чередования в определенной последовательности этих четырех оснований. Следовательно, всякая наследственная информация записана языком, содержащим всего четыре буквы. Не беден ли этот язык? Если посмотреть на окружающий мир, полный разнообразия и красоты, можно убедиться, что он не препятствует разнообразию жизни, но обеспечивает стабильность. Чтобы код легко и быстро «прочитывался» клеткой без больших энергетических затрат, он должен быть основан на малом числе букв. В процессе эволюции образовался именно такой генетический код. Несмотря на свою «скромность», он несет огромную информацию.

Вся молекула ДНК закручена в форме двойной спирали. Две цепи спирали соединены водородными связями, образуя так называемые комплементарные (дополнительные) половины, которые можно сравнить с объединенными негативом и позитивом. Это дает возможность генам при удвоении образовывать дополнительные негативные копии, форма которых относится к исходному «позитиву» как ключ к замку. Этот дополнительный «негатив» служит матрицей (шаблоном) при образовании новых позитивных копий. Так формируются две пары одинаковых цепей там, где ранее была только одна. Этот процесс копирования, по-видимому, характерен для любого организма.

В осуществлении разнообразия химических реакций в живой материи кроме нуклеиновых кислот участвует и другая большая группа молекул — белки.

Белки состоят из 20 видов аминокислот, которые соединяются друг с другом в так называемую полипептидную цепь.

Способность белков образовывать сложные структуры позволяет им обеспечивать тонкое регулирование биохимических реакций. Они обладают колоссальным функциональным разнообразием и огромной способностью к распознаванию.

Рассмотрим некоторые основные положения генетического кода. Можно ли с помощью четырех элементов (четырех оснований ДНК) управлять последовательностью 20 аминокислот в белке? Результаты исследований показывают, что любая аминокислота записывается (кодируется) комбинацией трех оснований, так называемым триплексным кодом. Так, например, фенилаланин кодируется тройкой УУУ — последовательностью из трех урацилов. Сама ДНК, являющаяся ядром кода, участвует в синтезе белка не непосредственно, а косвенно через РНК двух видов: матричную или информационную (иРНК) и транспортную (тРНК). Они способны строить не просто случайные сочетания аминокислот, а упорядоченные полимеры белков. Возможно, первичные рибосомы состояли только из РНК. Такие безбелковые рибосомы могли синтезировать упорядоченные пептиды при участии молекул тРНК, которые связывались с иРНК через спаривание оснований. Молекула РНК воспроизводит генетический код, записанный в ДНК, и переносит запись к находящимся в цитоплазме рибосомам. Это субмикроскопические внутриклеточные частицы, в которых происходит «сборка» белков из аминокислот. Генетический код един для всех живых организмов.

Предполагается, что первоначально код был более примитивным, однако он совершенствовался в процессе эволюции путем естественного отбора, то есть согласно биологическим закономерностям. Поэтому универсальность кода объясняется не тем, что другой код не может существовать по химическим причинам, а тем, что всякое его изменение было бы летальным. Известно, что генетическая информация записывается на атомном уровне и любая «ошибка» даже в несколько атомов может привести к гибельным последствиям. Изящная двойная спираль молекулы ДНК чрезвычайно тонка (10 атомов в поперечном направлении), но от нее зависит жизнь.

С образованием сложных ультрамолекулярных систем (нуклеиновые кислоты, белки, в том числе ферменты) и механизма идентичного воспроизведения (генети-ческого кода) загорается заря жизни на Земле. В начале следующео этапа, который невозможно точно отграничить, образуются биологические мембраны-органеллы, ответственные за форму, структуру и активность клетки. Биологические мембраны построены из агрегатов белков и липидов, способных отграничить органическое вещество от среды и служить защитной молекулярной оболочкой. Предполагается, что образование мембран могло начаться еще в процессе формирования коацерватов. Но для перехода от коацерватов к истинной живой материи были необходимы не только мембраны, но и катализаторы химических процессов — ферменты (энзимы). Предбиологический отбор коацерватов усиливал накопление белковоподобных полимеров, ответственных за ускорение химических реакций. Результаты отбора фиксировались в строении нуклеиновых кислот. Система успешно (осмысленно) работающих последовательностей нуклеотидов в ДНК усовершенствовалась именно путем отбора. Возникновение самоорганизации зависело как от исходных космическимх (химических) предпосылок, так и от конкретных условий земной среды. Самоорганизация возникла как реакция на определенные условия.


Страница: