Квантовая физика как новый этап изучения природы
Рефераты >> Естествознание >> Квантовая физика как новый этап изучения природы

Еще в 1940 г. советский физик В. А. Фабрикант указал на возможность использования явления вынужденного излучения для уси­ления электромагнитных волн. В 1954 г. советские ученые Н. Г. Ба­сов и А. М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцирован­ного излучения для создания микро­волнового генератора радиоволн с длиной волны ==1,27 см. За раз­работку нового принципа генерации и усиления радиоволн Н. Г. Басову и А. М. Прохорову была в 1959 г. присуждена Ленинская премия. В 1963 г. Н. Г. Басов, А. М. Про­хоров и Ч. Таунс были удостоены Нобелевской премии.

В 1960 г. в CШA был создан первый лазер — квантовый генератор электромагнитных волн в видимом диапазоне спектра.

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:

1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10~5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.

2. Свет лазера обладает исклю­чительной монохроматичностью. В отличие от обычных источников све­та, атомы которых излучают свет не­зависимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.

3. Лазеры являются самыми мощными источниками света. В уз­ком интервале спектра кратковре­менно (в течение промежутка време­ни продолжительностью порядка 10~13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2, в то время как мощ­ность излучения Солнца равна толь­ко 7-103 Вт/см2, причем суммарно по всему спектру. На узкий же интер­вал =10~6 см (ширина спектраль­ной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. На­пряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома. В обычных условиях большинство ато­мов находится в низшем энергетическом состоянии. Поэтому при низ­ких температурах вещества не све­тятся. При прохождении электромаг­нитной волны сквозь вещество ее энергия поглощается. За счет по­глощенной энергии волны часть ато­мов возбуждается, т. е. переходит в высшее энергетическое состояние.

Сущест­вуют различные методы получения среды с возбужденными состояниями атомов. В рубиновом лазере для этого используется специальная мощная лампа. Атомы возбуждают­ся за счет поглощения света.

Но двух уровней энергии для ра­боты лазера недостаточно. Каким бы мощным ни был свет лампы, число возбужденных атомов не будет боль­ше числа невозбужденных. Ведь свет одновременно и возбуждает атомы, и вызывает индуцированные пере­ходы с верхнего уровня на нижний.

В газовых лазерах этого типа рабочим веществом является газ. Атомы рабочего вещества возбуж­даются электрическим разрядом.

Применяются и полупроводнико­вые лазеры непрерывного действия. Они созданы впервые в нашей стра­не. В них энергия для излучения заимствуется от электрического тока.

Созданы очень мощные газоди­намические лазеры непрерывного действия на сотни киловатт. В этих лазерах “перенаселенность” верхних энергетических уровней создается при расширении и адиабатном ох­лаждении сверхзвуковых газовых по­токов, нагретых до нескольких тысяч кельвин.

VIII. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Когда греческий философ Демок­рит назвал простейшие нерасчлени­мые далее частицы атомами (слово атом, напомним, означает “недели­мый”), то ему, вероятно, все пред­ставлялось в принципе не очень сложным. Различные предметы, рас­тения, животные построены из неде­лимых, неизменных частиц. Превра­щения, наблюдаемые в мире,— это простая перестановка атомов. Все в мире течет, все изменяется, кроме самих атомов, которые остаются не­изменными.

Но в конце XIX века было откры­то сложное строение атомов и был выделен электрон как составная часть атома. Затем, уже в XX веке, были открыты протон и нейтрон — частицы, входящие в состав атом­ного ядра. Поначалу на все эти частицы смотрели точь-в-точь, как Демокрит смотрел на атомы: их считали неделимыми и неизменными первоначальными сущностями, ос­новными кирпичиками мироздания.

Ситуация привле­кательной ясности длилась недолго. Все оказалось намного сложнее:

как выяснилось, неизменных частиц нет совсем. В самом слове элемен­тарная заключается двоякий смысл.

С одной стороны, элементарный — это само собой разумеющийся, прос­тейший. С другой стороны, под эле­ментарным понимается нечто фун­даментальное, лежащее в основе вещей (именно в этом смысле сей­час и называют субатомные частицы элементарными).

Считать известные сейчас эле­ментарные частицы подобными не­изменным атомам Демокрита ме­шает следующий простой факт. Ни одна из частиц не бессмертна. Боль­шинство частиц, называемых сей­час элементарными, не могут про­жить более двух миллионных до­лей секунды, даже в отсутствие какого-либо воздействия извне. Сво­бодный нейтрон (нейтрон, находя­щийся вне атомного ядра) живет в среднем 15 мин.

Лишь фотон, электрон, протон и нейтрино сохраняли бы свою неиз­менность, если бы каждая из них была одна в целом мире (нейтрино лишено электрического заряда и его масса покоя, по-видимому, рав­на нулю).

Но у электронов и протонов име­ются опаснейшие собратья — позит­роны и антипротоны, при столкно­вении с которыми происходит взаим­ное уничтожение этих частиц и об­разование новых.

Фотон, испущенный настольной лампой, живет не более 10~8 с. Это то время, которое ему нужно, чтобы достичь страницы книги и погло­титься бумагой. Лишь нейтрино почти бессмертны из-за того, что они чрезвычайно слабо взаимодействуют с другими частицами. Однако и нейтрино гиб­нут при столкновении с другими частицами, хотя такие столкновения случаются крайне редко.

Все элементарные частицы пре­вращаются друг в друга, и эти взаимные превращения — главный факт их существования.

Превращения элементарных час­тиц ученые наблюдали при столкно­вениях частиц высоких энергий.

Представления о неизменности элементарных частиц оказались не­состоятельными. Но идея об их неразложимости сохранилась.

Элементарные частицы уже да­лее неделимы, но они неисчерпаемы по своим свойствам.

Вот что заставляет так думать. Пусть у нас возникло естествен­ное желание исследовать, состоит ли, например, электрон из каких-либо других субэлементарных частиц. Что нужно сделать для того, чтобы попытаться расчленить электрон? Можно придумать только один спо­соб. Это тот же способ, к которому прибегает ребенок, если он хочет узнать, что находится внутри пласт­массовой игрушки,— сильный удар.

По современным представ­лениям элементарные частицы — это первичные, неразложимые далее частицы, из которых построена вся материя. Однако неделимость эле­ментарных частиц не означает, что у них отсутствует внутренняя струк­тура.

В 60-е гг. возникли сомнения в том, что все частицы, называемые сейчас эле­ментарными, полностью оправды­вают это название. Основание для сомнений простое: этих частиц очень много.

Открытие новой элементарной частицы всегда составляло и сей­час составляет выдающийся триумф науки. Но уже довольно давно к каждому очередному триумфу нача­ла примешиваться доля беспокой­ства. Триумфы стали следовать буквально друг за другом.


Страница: