Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение
Рефераты >> Авиация и космонавтика >> Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение

и

левая часть (1.2.11) вдвое превышает левую часть (1.2.10) и, следователь!; о,

Считаяв точке, гдеиз (1.2.10) находим

где

2.2 Шкалы времени

Уравнение (1.2.4)—дифференциальное, связывающее координатное и собственное время. С учетом (1.2.11) имеем

Еслиопределено интегрированием формулы (1.2.9), то можно найтии, следовательно, получить после интегрирования выражения (1.2.15)как функцию

Необходимо также выразить дифференциальное уравнение (1.2.15) через координатную скоростьПринимая в (1.2.11)

с учетом (1.2.4) получаем

Формулы (1.2.15) и (1.2.16) можно вывести делением формулы (1.2.32) на, соответственно,

3. НЬЮТОНОВО ПРИБЛИЖЕНИЕ

Принимая в уравнении (1.2.9)получим известное выражение для ускорения под действием закона всемирного тяготения Ньютона

Здесь мы отождествляемгде— постоянная тяготения, а - центральная масса. В этом случае в соответствии с (1.1.13) а из Таким образом, уравнение (1.2.4) дает.а координатное и собственное время оказывается идентичным.

Подставив (1.3.8) в (1.2.9) и зная, что— произвольная функция можно получить уравнение геодезической в любых координатах. Очевидно, что даже и призакон обратных квадратов строго выводится только в случае постоянства к, что вновь приводит нас к стандартным координатам Шварцшильда с простой лишь сменой шкалы. Таким образом, уравнение геодезической (1.2.9) в стандартных координатах Шварцшильда является непосредственным релятивистским обобщением уравнения Ньютона (1.3.1). В этих координатах мы и будем рассматривать теорию орбитального движения, принимая ньютоново решение как первое приближение.

Теперь имеем

и, следовательно,

и далее по (3.3.1)

Учитывая, что—постоянный единичный вектор, интегрирование дает

где— произвольный постоянный единичный вектор, а е — произвольная константа. В силу перпендикулярности ииз (1.3.3) следует, чтоперпендикулярнои находится в плоскости орбиты.

Умножив скалярно (1.3.3) наполучаем

где обозначеноРазделив (1.3.4) на, находим уравнение

орбиты

Поскольку— ортогональные единичные векторы в плоскости

орбиты, а— единичный вектор вдоль, можно ввести уголтакой, что

(1.3.6)

и, следовательно,Отсюда можно заключить, что (1.3.5) —

уравнение конического сечения, отнесенное к фокусу как началу, с эксцентриситетом е и параметром орбитыЕдиничный вектор

направлен вдоль большой полуоси (рис. 1.1) от центра к фокусу. Можно интерпретировать полную скоростьв (1.3.3) как сумму двух векторов: один из них — постоянная скоростьвсегда перпендикулярная радиусу-вектору, а другой— постоянная скорость в фиксированном направлениивдоль малой оси сечения. Приняв большую полуось равной для параметра орбиты имеемгде верхний знак относится к эллиптическому движениюнижний — к гиперболическомуТаким образом,


Страница: