Проблема тепловой смерти ВселеннойРефераты >> Авиация и космонавтика >> Проблема тепловой смерти Вселенной
Содержание
Введение
1. Понятие Вселенной
2. Проблема тепловой смерти Вселенной
2.1 Второй закон термодинамики
2.2 "За" и "против" теории тепловой смерти
Заключение
Введение
В данной работе мы поговорим о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.
Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти». В данной работе мы и рассмотрим его.
1. Понятие Вселенной
A что такое Вселенная? Ученые под этим термином понимают максимально большую область пространства, включающую в себя как все доступные для изучения небесные тела и их системы, т.е. как Метагалактику, так и возможное окружение, еще влияющее на характер распределения и движения тел в ее астрономической части.
Известно, что Метагалактика находится в состоянии приблизительно однородного и изотропного расширения. Все галактики удаляются друг от друга со скоростью тем большей, чем больше расстояние между ними. С течением времени скорость этого расширения уменьшается. На расстоянии 15-20 миллиардов световых лет удаление происходит со скоростью, близкой к скорости света. По этой и ряду других причин, мы не можем видеть более далекие объекты. Существует как бы некий «горизонт видимости». Вещество на этом горизонте находится в сверхплотном («сингулярном», т.е. особом) состоянии, в каком оно было в момент условного начала расширения, хотя на этот счет имеются и другие предположения. Из-за конечности скорости распространения света (300000 км/с) мы не можем знать, что происходит на горизонте сейчас, но некоторые теоретические расчеты позволяют думать, что за пределами горизонта видимости вещество распределено в пространстве примерно с той же плотностью, что и внутри него. Именно это и приводит как к однородному расширению, так и к наличию самого горизонта. Поэтому часто Метагалактику не ограничивают видимой частью, а рассматривают как сверхсистему, отождествленную со всей Вселенной в целом, считая ее плотность однородной. В простейших космологических построениях рассматривают два основных варианта поведения Вселенной – неограниченное расширение, при котором средняя плотность вещества с течением времени стремится к нулю, и расширение с остановкой, после которой Метагалактика должна начать сжиматься. В общей теории относительности показывается, что наличие вещества искривляет пространство. В модели, где расширение сменяется сжатием, плотность достаточно высока и кривизна оказывается такой, что пространство «замыкается на себя», подобно поверхности сферы, но в мире с большим, чем «у нас», числом измерений. Наличие горизонта приводит к тому, что даже этот пространственно конечный мир мы не можем видеть целиком. Поэтому с точки зрения наблюдений замкнутый и открытый мир различаются не очень сильно.
Скорее всего, реальный мир устроен сложнее. Многие космологи предполагают, что существует несколько, может быть, даже очень много метагалактик и все они вместе могут представлять какую-то новую систему, являющуюся частью некоторого еще более крупного образования (может быть, принципиально иной природы). Отдельные части этого гипермира (вселенные в узком смысле) могут иметь совершенно различные свойства, могут быть не связаны друг с другом известными нам физическими взаимодействиями (или быть слабо связанными, что имеет место в случае так называемого полузамкнутого мира). В этих частях гипермира могут проявляться иные законы природы, а фундаментальные константы типа скорости света могут иметь другие значения или вообще отсутствуют. Наконец, в таких вселенных может быть не такое, как у нас, число пространственных измерений.
2. Проблема тепловой смерти Вселенной
2.1 Второй закон термодинамики
Согласно второму закону (началу) термодинамики, процессы, происходящие в замкнутой системе, всегда стремятся к равновесному состоянию. Иными словами, если нет постоянного притока энергии в систему, идущие в системе процессы стремятся к затуханию и прекращению.
Идея о допустимости и даже необходимости применения второго закона термодинамики ко Вселенной как целому принадлежит В. Томсону (лорду Кельвину), который опубликовал ее еще в 1852 г. Несколько позже Р. Клаузиус сформулировал законы термодинамики в применении ко всему миру в следующем виде: 1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму.
Максимальная энтропия как термодинамическая характеристика состояния соответствует термодинамическому равновесию. Поэтому обычно интерпретация этого положения сводилась (часто сводится и сейчас) к тому, что все движения в мире должны превратиться в теплоту, все температуры выровняются, плотность в достаточно больших объемах должна стать всюду одинаковой. Это состояние и получило название тепловой смерти Вселенной.
Реальное разнообразие мира (кроме, разве что, распределения плотности на самых больших ныне наблюдаемых масштабах) далеко от нарисованной картины. Но если мир существует вечно, состояние тепловой смерти уже давно должно было бы наступить. Полученное противоречие получило название термодинамического парадокса космологии. Чтобы его ликвидировать, нужно было допустить, что мир существует недостаточно долго. Если говорить о наблюдаемой части Вселенной, а также о ее предполагаемом окружении, то это, по-видимому, так и есть. Мы уже говорили о том, что она находится в состоянии расширения. Возникла она скорее всего в результате взрывообразной флуктуации в первичном вакууме сложной природы (или, можно сказать, в гипермире) 15 или 20 миллиардов лет назад. Астрономические объекты – звезды, галактики – возникли на более поздней стадии расширения из первоначально почти строго однородной плазмы. Однако по отношению к далекому будущему вопрос остается. Что ждет нас или наш мир? Наступит рано или поздно тепловая смерть или же этот вывод теории по каким-то причинам неверен?
2.2 «За» и «против» теории тепловой смерти
Многие выдающиеся физики (Л. Больцман, С. Аррениус и др.) категорически отрицали возможность тепловой смерти. Вместе с тем даже и в наше время не менее крупные ученые уверены в ее неизбежности. Если говорить о противниках, то, за исключением Больцмана, обратившего внимание на роль флуктуаций, их аргументация была скорее эмоциональной. Лишь в тридцатые годы нашего столетия появились серьезные соображения относительно термодинамического будущего мира. Все попытки решения термодинамического парадокса можно сгруппировать в соответствии с тремя основными идеями, положенными в их основу: