Холодильное оборудование предприятий торговли и общественного питания
Рефераты >> Кулинария >> Холодильное оборудование предприятий торговли и общественного питания

Водоаммиачные растворы, в которых холодильным агентом является аммиак, а поглотителем — вода, применяют для получения низких температур, раствор бромистого лития в воде, где вода является холодильным агентом, а бромистый литий — поглотителем, — в установках кондиционирования воздуха. Применяют также растворы хладона-22 в дибутилфталате или в диметилэфиртетра-этиленгликоле. По принципу действия абсорбционные машины разделяют на машины непрерывного и периодического действия. Машины непрерывного действия бывают насосные и безнасосные.

Водоаммиачные абсорбционные машины непрерывного действия с насосами имеют большую холодопроизводительность (35—1000 кВт). Их используют на предприятиях химической промышленности, крупных мясокомбинатах и других предприятиях, потребляющих значительное количество холода. Водоаммиачные машины периодического действия средней холодопроизводительности (до 12 кВт) применяют в сельском хозяйстве для охлаждения продуктов. Малые водоаммиачные машины безнасосные (абсорбционно-диффузионные) холодопроизводительностью 20—55 Вт предназначены для охлаждения домашних холодильников и торгового оборудования. Бромистолитиевые насосные абсорбционные машины непрерывного действия холодопроизводительностыо 450—3000 кВт применяют в установках кондиционирования воздуха.

В абсорбционной машине совершаются круговой процесс аммиака и круговой процесс раствора. Прямой круговой процесс раствора реализуется в системе абсорбер — насос — кипятильник — регулирующий вентиль.Обратный круговой процесс аммиака осуществляется в системе конденсатор — регулирующий вентиль — испаритель — система (абсорбер — генератор) . В этом холодильном цикле компенсирующим является прямой круговой процесс раствора, совершаемый при затрате теплоты в кипятильнике-генераторе и затрате работы в насосе.

В процессе работы абсорбционной холодильной машины к рабочему телу теплота подводится в кипятильнике и испарителе, а также теплота, эквивалентная работе, затраченной в насосе, отводится теплота в конденсаторе и абсорбере. При установившемся режиме работы машины количество подведенной теплоты должно быть равно количеству отведенной, т. е. выполняется условие теплового баланса.

Эффективность цикла абсорбционной машины характеризуется тепловым коэффициентом £, который равен отношению количества полученного холода к количеству теплоты, затраченной в кипятильнике, и работы затраченной в насосе. Относительно малой величиной можно пренебречь.

Тепловой коэффициент абсорбционной машины зависит от температур кипения (в испарителе) и конденсации, а также от температуры греющего кипятильник источника. При понижении температуры кипения холодильного агента в испарителе тепловой коэффициент машины уменьшается, хотя и незначительно. Например, для абсорбционной машины непрерывного действия холодопроизводительностью 35 кВт при температуре кипения аммиака —10°С тепловой коэффициент равен 0,4 - а при температуре кипения —20° С — 0,37.

Абсорбционные машины можно сравнивать с компрессорными по тепловым коэффициентам формулы.

Тепловой коэффициент абсорбционных машин меньше, чем компрессорных. Кроме того, низкотемпературные абсорбционные машины работают не на совершенном рабочем теле — водоаммиачном растворе, недостатки которого обусловлены сравнительно небольшой разностью между температурами кипения компонентов в чистом виде, что затрудняет получение чистого холодильного агента при выпаривании в кипятильнике. Но абсорбционные машины могут работать на дешевых источниках тепла (отходящие газы, отработавший пар, горячая вода), и в этом случае они значительно экономичнее компрессорных.

Абсорбционные машины просты в обслуживании, но более тяжелые и громоздкие.

Полная схема абсорбционной холодильной машины.

Рис. 1. Схема абсорбционной холодильной машины с теплообменником и ректификатором:1— теплообменник; 2 — ректификационная колонка; 3 — дефлегматор.

Для повышения экономичности и надежности работы абсорбционной машины в схему дополнительно включают вспомогательные аппараты (теплообменник раствора и рек Теплообменник устанавливают между абсорбером и кипятильником. Через кожух теплообменника проходит горячий раствор из кипятильника, а по расположенным в кожухе трубкам — холодный раствор из абсорбера. Между ними происходит теплообмен, в результате чего ректификатор).

Для беспрепятственного стока обедненного раствор из кипятильника в абсорбер уровень жидкости в кипятильнике должен быть выше уровня жидкости в абсорбере на величину. Крепкому раствору, направляющемуся из абсорбера в верхнюю часть кипятильника необходимо преодолеть разницу в уровнях жидкости и кипятильнике и сборнике абсорбера. Для подъем крепкого раствора используют термосифон. Он представляет собой трубку малого диаметра (4—5 мм), обогреваемую нагревателем кипятильника (2—3 витка вокруг внутренней трубы кипятильника). Когда раствор закипает в термосифоне, пузырьки пара как поршень проталкивают жидкость в верхнюю зону кипятильника

В абсорбционно-диффузионной машине имеются три кольца циркуляции: циркуляция холодильного агента циркуляция раствора и циркуляция водорода. Аммиак проходит все элементы машины, раствор циркулирует между кипятильником и абсорбером, а водород — между испарителем и абсорбером. Сборник водорода предназначен для регулирования давления в агрегате при изменении температуры окружающего воздуха. При ее повышении аммиак вытесняет водород из сборника в испаритель и абсорбер, в результате чего в этих аппаратах повышается общее давление.

Преимущества абсорбционно-диффузионных машин — отсутствие движущихся частей, простота изготовления и полная бесшумность работы. Но машины с инертным газом менее экономичны по сравнению с абсорбционными машинами с насосом. Особенно неэкономичны такие машины на электрическом подогреве. В этом случае они потребляют энергии в 2 раза больше, чем компрессорные. Однако, используя для обогрева вместо электрического тока бытовой газ или керосин, стоимость эксплуатации абсорбционно-диффузионных машин можно сократить в 4—5 раз.

ПАРОЭЖЕКТОРНЫЕ ХОЛОДИЛЬНЫЕ МАШИНЫ

В пароэжекторных холодильных машинах энергия, необходимая для осуществления холодильного (обратного) цикла, вводится в виде теплоты, превращающейся затем в кинетическую энергию струи рабочего пара. Такие машины иногда называют пароструйными.

В пароэжекторной машине в качестве рабочих тел Можно использовать те же холодильные агенты, что и в паровых компрессорных машинах. Однако преимущественно применяют пароводяные эжекторные машины, В которых холодильным агентом является вода.

Принципиальная схема пароэжекторной холодильной Машины. Такая схема показана на рис.

Рис. 2. Принципиальная схема пароэжекторной холодильной машины.

В котле при затрате теплоты образуется рабочий пар высокого давления, который поступает в пароструйный эжектор, состоящий из сопла, камеры смешения и диффузора. При истечении пара через сопло в камеру смешения давление понижается до давления в испарителе но, а скорость значительно возрастает. При этом потенциальная энергия пара превращается в кинетическую энергию струи, которая вытекает с большой скоростью, и под действием энергии струи пар низкого давления отсасывается из испарителя в камеру смешения. Парообразование в испарителе происходит за счет теплоты, взятой от охлаждаемой среды.


Страница: