Методы исследования мяса птицы
Рефераты >> Кулинария >> Методы исследования мяса птицы

Реакция с флороглюцином в эфире (по Крейсу). В пробирку помещают 3-5 г жира, расплавляют его на водяной бане, добавляют такие же объемы концентрированной соляной кислоты плотностью 1,19 г/см^3 и раствора флороглюцина в эфире массовой долей 1%. Пробирку закрывают резиновой пробкой и энергично встряхивают. При наличии альдегидов нижний слой в пробирке окрашивается в красный цвет.

Реакция с флороглюцином в ацетоне (по Видману). В пробирке расплавляют 3-5 г жира, добавляют к нему такой же объем раствора флороглюцина в ацетоне массовой долей 1% и 2-3 капли концентрированной серной кислоты, закрывают резиновой пробкой и встряхивают. При наличии альдегидов нижний слой содержимого в пробирке окрашивается в красный цвет.

Реакция с резорцином в бензоле (по Видману). К 3-5 г расплавленного в пробирке жира добавляют такие же объемы концентрированной серной кислоты и насыщенного раствора резорцина в бензоле. Пробирку закрывают резиновой пробкой и встряхивают. При наличии альдегидов появляется красно-фиолетовое окрашивание.

2) Количественное определение альдегидов основывается на измерении интенсивности окраски, развивающейся при взаимодействии альдегидов с бензидином

Результат определения условно выражают в виде бензидинового числа (Бч), показывающего содержание альдегидов в расчете на коричный альдегид в мг на 100 г жира.

Навеску жира массой 0,5-1,0 г (с точностью до 0,001 г) помещают в мерную колбу на 25 мл, растворяют в смеси этилового спирта с хлороформом (1:1) и доводят до метки. Полученный раствор наливают в кювету шириной 1 см и колориметрируют на фотоэлектроколориметре при длине волны 360 нм (светофильтр №2) по отношению к растворителю (спирт + хлороформ). Полученное значение оптической плотности характеризует окраску жира – D1.

Затем в колбу с притертой пробкой отбирают пипеткой с грушей 10 мл раствора жира, в другую колбу – 10 мл растворителя (хлороформ + спирт). В каждую колбу добавляют по 1 мл 0,5% раствора бензидина (в смеси 1:1 этилового спирта и ледяной уксусной кислоты), который готовят на один день.

Колбы с содержимом встряхивают и выдерживают 15 мин, после чего определяют оптическую плотность данного раствора жира по отношению к растворителю, обработанному бензидином – D2. Полученная величина оптической плотности характеризует плотность жира и присутствующих в нем альдегидов (5).

Оптическая плотность, обусловленная окраской, развивающейся в результате взаимодействия альдегидов с бензидином равна:

1,1D2 – D1

где 1,1 – поправка на изменение объема при прибавлении к 10 мл испытуемого раствора жира 1 мл 0,5% раствора бензидина.

Содержание альдегидов (Бч) в миллиграммах коричного альдегида (Ка) на 100 г жира рассчитывается по формуле:

[(1,1D2 – D1)*0,0094 *V*100]/m*h

где 0,0094 – постоянная величина, показывающая, какое количество коричного альдегида приходится на единицу оптической плотности при 360 нм; V – объем, в котором растворена навеска жира, мл.

Степень порчи жира исследуют не только органолептически, но и различными химическими методами. Результаты определений обычно характеризуют условными единицами – кислотным, перекисным и другими числами (ГОСТ Р 51487-99). Гидролитическая порча жиров характеризуется накоплением свободных жирных кислот. Это может быть как следствием автолиза, так и результатом действия других факторов: кислот, щелочей, оксидов металлов и других неорганических катализаторов, а также ферментов микроорганизмов.

Под влиянием тканевых липаз наблюдается гидролитический распад триглицеридов, в результате чего отмечается нежелательное для качественной характеристики жира накопление свободных жирных кислот, выражающееся в повышении кислотного числа жира. В свежей жировой ткани, только что извлеченной из туши, кислотное число не велико и не превышает 0,05-0,2. Скорость и глубина гидролиза жира зависят от температуры (рис. 2).

Рис. 2. Изменение кислотного числа почечного свиного жира-сырца в процессе хранения при температуре: 1 – 22 С, 2 – 4,4 С

Появление в жире при гидролитическом распаде небольшого количества высокомолекулярных жирных кислот не вызывает изменения вкуса и запаха продукта. При наличии в составе триглицеридов низкомолекулярных кислот при гидролизе могут образовываться капроновая и мясляная кислоты, обладающие неприятным запахом и специфическим вкусом, резко ухудшающими органолептические свойства продукта.

В топленых жирах автолитического расщепления жира, как правило, не наблюдается. Это объясняется инактивацией содержащейся в жировой ткани липазы при достижении температуры 60С в процессе вытопки. Гидролитическая порча топленого жира возможна при наличии влаги, обсеменении микрофлорой, неполной денатурации белков при вытопке жира или в присутствии неорганических катализаторов.

В процессе хранения и переработки жиров возможны их окислительные изменения, которые могут протекать с различной скоростью, глубиной, иметь различную направленность в зависимости от природных свойств жира и условий окисления.

Окисление жиров (автоокисление) протекает при низких температурах в присутствии газообразного кислорода.

О начале и глубине окисления жира судят по величине перекисного числа. В свежем жире пероксидов нет. На начальных стадиях окисления в течение некоторого времени химические и органолептические показатели жира почти не изменяются. Этот период, имеющий для различных жиров разную продолжительность, называют индукционным. После окончания индукционного периода жир начинает портиться (рис. 3), что сопровождается увеличением перекисного числа и изменением органолептических свойств жира. Наличие индукционного периода объясняется малым количеством частиц с повышенной кинетической энергией (возбужденных или свободных радикалов) в начале процесса.

Рис. 3. Накопление пероксидов при окислении топленого свиного жира при 90 С

Продолжительность индукционного периода зависит от массовой доли естественных (каротиноиды, токоферолы, лецитин, витамины А и К) или искусственных (производные фенола, бутилоксианизол, бутилокситолуол) антиокислителей, природы жира и условий хранения. Механизм действия антиокислителей состоит в их более активном взаимодействии со свободными радикалами и кислородом воздуха, за счет чего радикалы выводятся из сферы реакции и цепь обрывается.

Существует много способов определения кислотного и перекисного чисел. Стандартный метод (ГОСТ 7636-85, п. 7.9) определения кислотного числа основан на взаимодействии свободных жирных кислот, содержащихся в 1 г жира, с гидроксидом калия (или натрия) (5). Для определения перекисного числа существуют модифицированные методы (метод Якубова) и стандартные (например йодометрический) (8).

Метод Якубова основан на определении содержания перекисей в пищевых продуктах. Перекиси, содержащиеся в предварительно обезвоженном хлороформном растворе жира продукта (экстракте, полученном прессованием) выявляют после фильтрации экстракта по их реакции с йодистым калием в присутствии ледяной уксусной кислоты и слабого раствора серной кислоты (0,24 моль/дм^3, или 0,24N), с последующим титрованием свободного йода раствором серноватокислого натрия в присутствии крахмала.


Страница: