Разработка инклинометра с непрерывным измерением азимута
Рис.3 Пример построения инклинограммы – горизонтальной проекции ствола скважины
Углы и азимуты отклонения в скважинах измеряют специальными скважинными приборами – инклинометрами. В зависимости от системы измерения все инклинометры можно объединить в три группы.
Первая группа объединяет приборы, в которых для измерения азимута служит магнитная стрелка (буссоль), а датчиком угла является отвес. Показания датчиков с помощью градуированных сопротивлений (потенциометров) преобразуются в электрические сигналы и по жиле кабеля передаются на поверхность (инклинометр на сопротивлениях).
Во вторую группу входят фотоинклинометры. В качестве указателя азимута служит буссоль, указателя угла – сферическое стекло с нанесенной сеткой углов наклона и шарик, свободно перемещающийся по этой сферической поверхности. Замеры проводят по точкам. Регистрация осуществляется в скважинном приборе путей фотографирования показаний датчиков на кинопленку.
Третья группа – это гироскопические инклинометры. В качестве датчика азимута используют гироскоп, который при вращении сохраняет заданное направление оси в пространстве. Датчиком угле искривления служит отвес. Измерения выполняют непрерывно по 6 стволу скважины.
Приборами, в которых датчиком азимута служит буссоль, измерения азимута можно проводить только в открытом стволе скважины Гироскопические инклинометры позволяют измерять азимут в скважинах, обсаженных металлической колонной, а также в разрезах, в которых естественное магнитное поле Земли аномально искажено местными полями.
В практике геологоразведочных работ на нефть и газ наиболее широко применяются инклинометры с дистанционным электрическим измерением, в которых датчиками служат градуированные электрические сопротивления.
Основная часть инклинометра – вращающаяся рамка, кинематическая схема которой показана на рис. 4. Центр тяжести рамки смещён, в результате чего при положении скважинного прибора в пространстве плоскость рамки устанавливается перпендикулярно к плоскости искривления скважины. В рамке размещен указатель азимута и угла. Указатель азимута состоит из магнитной стрелки 1 и градуированного электрического сопротивления 2 (кругового реохорда).
Рис. 4 Схема конструкции измерительной части инклинометра на сопротивлениях
Круговой реохорд смонтирован на изоляционной панели и установлен под магнитной стрелкой. Магнитная стрелка выполнена из двух намагниченных стерженьков, которые закреплены в дюралюминиевом колпачке с агатовым подшипником. Подшипник насажен на острие оси 5. Стрелка снабжена изолированными от нее пружинными контактами 4.
Корпус, в котором смонтирован указатель азимута, закреплен на двух полуосях и под действием груза 5 занимает положение, при котором ось магнитной стрелки всегда ориентирована вертикально.
Датчик угла искривления состоит из отвеса 6, стрелки 7 и градуированного электрического сопротивления (углового реохорда) 8. Плоскость качания отвеса перпендикулярна к плоскости рамки и совпадает с плоскостью искривления скважины.
В инклинометре установлен электромагнит, который по команде с поверхности фиксирует или освобождает магнитную стрелку и отвес. С помощью коллектора с тремя контактными кольцами 9 и двумя парами щеток 10 к измерительной цепи подключаются с помощью переключателя П (рис. 5) либо реохорд угла наклона, либо датчик азимута.
Рис.5. Принципиальная электрическая схема инклинометра
При изменении азимута магнитная стрелка пружинными контактами 4 закорачивает часть реохорда. Сопротивление незамкнутой части пропорционально азимуту φ. При измерении угла стрелка указателя угла отклонения, жестко скрепленная с отвесом, переместится на дугу δ и закоротит реохорд. Сопротивление незакороченного участка реохорда пропорционально углу δ.
ЦЖК – центральная жила кабеля; ОК – оплётка кабеля.
Углы отклонения измеряют при фиксированном положении всех чувствительных элементов. Для замеров и используют мостовую схему.
Три плеча моста имеют постоянное сопротивление и установлен! на поверхности в панели управления. Сопротивления и включаются при измерении углов, сопротивления и – при измерении азимута; – общее сопротивление моста. Четвертое плечо слагается из сопротивления жилы кабеля, переменного сопротивление , предназначенного для компенсации изменения сопротивление жилы кабеля, и сопротивлений реохорда угла наклона или магнитной буссоли .
В одну диагональ моста АВ подключен источник тока Е, в другую диагональ моста MN – гальванометр G. Переменное сопротивление служит для компенсации моста при измерении или .
В настоящее время выпускаются инклинометры как для использования на одножильном кабеле, так и сбрасываемые в бурильную колонну (извлечение производится после подъема бурильной колонны либо с помощью овершота съёмной грунтоноски).
2. Оценка погрешностей измерения
Погрешности инклинометрических исследований обусловлены в общем случае принятой методикой расчета координат оси ствола скважины, погрешностями измерения глубины, шагом измерения для точечных и квантования для непрерывных инклинометров (методическими погрешностями), погрешностями, вызываемыми непараллельной установкой скважинного прибора относительно оси скважины и заметной кривизной ее ствола на длине прибора (установочными погрешностями), а также погрешностями, вызванными конечной точностью измерения углов искривления скважин (так называемыми инструментальными погрешностями).
Методические погрешности, независимо от принятой методики расчета координат, определяются выбранным шагом измерений, интенсивностью искривления оси скважин, характером искривления (постоянная интенсивность, меняющаяся с глубиной интенсивность и т.д.).
Установочные погрешности не зависят от шага измерений и погрешностей инклинометра и определяются, в первую очередь, геометрическими параметрами - соотношением диаметров ствола скважины и охранного кожуха прибора, его длиной, наличием и характером кавернозности ствола, местом привязки данных инклинометрии по глубине относительно скважинного прибора и т.д., а также параметрами искривления оси скважины.