Оценка методологического обеспечения бурения скважин
-изучение геологического разреза скважин (литолого-геологический разрез скважины)
-изучение технического состояния скважин
-контроль за разработкой месторождения нефти и газа
-проведение прострелочных и взрывных работ в скважинах
-опробование пластов и отбор образцов со стенок скважины
8. Взаимодействие гамма квантов с веществом, гамма каротаж, решаемые задачи
Радиоактивность-способность некоторых атомных ядер самопроизвольно распадаться с испусканием α, β, γ лучей, а иногда и других частиц. Гамма-лучи представляют собой электромагнитное излучение с малой длиной волны. Длина пробега γ - квантов в горных породах достигает десятков сантиметров. Благодаря высокой проникающей способности они являются основным видом излучений, регистрируемых в методе естественной радиоактивности. Энергию частиц выражают в электрон-вольтах (эВ). Воздействие гамма-излучения на среду количественно оценивается в рентгенах. Из естественных радиоактивных элементов наиболее распространены уран U238,торий Тh232 и изотоп калия К40. Радиоактивность осадочных пород, как правило, находится в прямой зависимости от содержания глинистого материала. Песчаники, известняки и доломиты имеют малую радиоактивность, наименьшую радиоактивность имеют каменная соль, ангидриты и угли. Для измерения интенсивности естественного гамма-излучения по стволу скважины пользуются скважинным прибором, содержащим индикатор γ- излучения. В качестве индикатора используют газоразрядные сцинтилляционные счетчики. Газоразрядные счетчикипредставляет собой баллон, в который помещены два электрода. Баллон наполнен смесью инертного газа с парами высокомолекулярного соединения, находящейся под низким давлением. Счетчик подключается к источнику постоянного тока высокого напряжения - порядка 900 вольт. Действие газоразрядного счетчика основано на том, что γ-кванты, попадая в него, ионизируют молекулы газового наполнителя. Это приводит к возникновению разряда в счетчике, что создаст импульс тока в цепи его питания. Гамма-каротаж. При прохождении через вещество гамма-кванты взаимодействуют с электронами и ядрами атомов. Это приводит к ослаблению интенсивности γ -излучения. Основными видами взаимодействия гамма-квантов с веществом являются образование электрон-позитронных пар, фотоэффект, эффект Комптона( γ -квант передает часть своей энергии электрону и изменяет направление движения). Электрон выбрасывается из атома. После нескольких актов рассеяния энергия кванта уменьшатся до величины, при которой он поглощается за счет фотоэффекта. Фотоэффект сводится к тому, что γ -квант передает всю свою энергию одному из электронов внутренней оболочки и поглощается, а электрон выбрасывается за пределы атома. На показания ГГК значительное влияние оказывает скважина. Она уменьшает плотность среды, окружающей зонд, и приводит к увеличению показании ГГК пропорционально диаметру. Для уменьшения влияния скважины приборы ГГС имеют прижимные устройства и экраны, защищающие индикатор от рассеянного γ -излучения бурового раствора. Облучение породы и восприятие рассеянного γ -излучения в этом случае осуществляется через небольшие отверстия в экранах, называемые коллиматорами. Характерной особенностью диаграмм метода рассеянного гамма излучения является не прямая, а обратная связь с плотностью, что обусловлено размером зонда. Если бы индикатор размещался вблизи источника, среда с повышенной плотностью отмечалась бы и высокой интенсивностью рассеянного γ -излучения.
9. Выделение интервалов перфорации по локации муфт
Метод электромагнитной локации муфт применяют:
для установления положения замковых соединений прихваченных бурильных труб;
определения положений муфтовых соединений обсадной колонны;
точной привязки показаний других приборов к положению муфт;
взаимной привязки показаний нескольких приборов;
уточнения глубины спуска насосно-компрессорных труб;
определения текущего забоя скважины;
в благоприятных условиях – для определения интервала перфорации и выявления мест нарушения (разрывы, трещины) обсадных колонн.
Физические основы метода: Метод электромагнитной локации муфт (ЛМ) основан на регистрации изменения магнитной проводимости металла бурильных труб, обсадной колонны и насосно-компрессорных труб вследствие нарушения их сплошности.
Аппаратура: Детектор (датчик) локатора муфт представляет собой дифференциальную магнитную систему, которая состоит из многослойной катушки с сердечником и двух постоянных магнитов, создающих в катушке и вокруг нее постоянное магнитное поле. При перемещении локатора вдоль колонны в местах нарушения сплошности труб происходит перераспределение магнитного потока и индуцирование ЭДС в измерительной катушке.
Активный локатор муфт содержит две катушки, каждая из которых имеет возбуждающую и приемную обмотки. Под воздействием переменного магнитного поля, генерируемого подачей переменного напряжения на возбуждающие обмотки, в приемных обмотках возникает переменное напряжение, которое зависит от магнитных свойств окружающей среды. Информативным параметром служит разность напряжений на приемных обмотках, которая зависит от сплошности среды.
Билет 4
10. Комплекс ГИС в скважине, обсаженной колонной, решаемые задачи
Предпосылкой успешного применения каротажа для изучения геологического разреза скважины является выбор надлежащего комплекса (программы) геофизических исследований. Программа должна обеспечивать решение поставленных перед нею, задач при возможно меньшем объеме измерений. С учетом сходства геологических и технических условий проведения, работ в разных районах устанавливают типовые комплексы ГИС. Типовые комплексы включают в себя общие исследования, которые выполняются по всему стволу скважины и легальные исследования перспективных на нефть и газ интервалов. В скважине, обсаженной колонной, проводятся все виды каротажа кроме микрокаротажа и БКЗ (т. к. они исп-ся в необсаженной колонной скважине, потому что эти методы определяют толщину глинистой корки).
11. Нейтронный гамма-каротаж, физические основы, кривые, решаемые задачи
Нейтронный каротаж применяются в необсаженных и обсаженных скважинах и используется для решения следующих задач:
с целью литологического расчленения разрезов;
определение положения текущего газонефтяного контакта (ГНК), интервалов прорыва газа, перетока, разгазирования нефти в пласте и оценки газонасыщенности;
определение положения водонефтяного контакта ВНК в скважинах с высокой минерализацией пластовых вод.
Нейтронное излучение обладает наибольшей проникающей способностью. Это обусловлено тем, что нейтроны являясь незаряженными частицами не взаимодействуют с электронными оболочками атомов и не отталкиваются кулоновским полем ядра. Так же как и гамма-кванты, нейтроны характеризуются энергией Е, которая в этом случае связана с их скоростью. Различают быстрые нейтроны с энергией 1-15 МэВ, промежуточные 1 МэВ - 10 эВ, медленные или надтепловые 0,1-10 эВ и тепловые нейтроны со средней энергией 0,025 эВ. Взаим-ие нейтронов с вещ-ом закл-ся в упругом столкновении с ядром с потерей части энергии, т.е. в замедлении нейтрона, и захвате нейтрона ядром. Дня нейтронов с энергией от нескольких МэВ до 0,1 эВ основным видом взаим-ия явл-ся упругое рассеяние. При упругом рассеянии нейтронов величина потерь энергии на соударение опр-ся только массой ядра: чем меньше масса ядра, тем больше потеря энергии. Наиб. потеря энергии происходит при столкновении нейтрона с ядром атома водорода. Одним из основных нейтронных параметров среды является длина замедления L3. Это среднее расстояние от места вылета нейтрона до места, где он замедлится до тепловой энергии. Замедлившиеся нейтроны продолжают двигаться и сталкиваться с ядрами элементов, но без изменения средней энергии. Этот процесс называется диффузией. Среднее расстояние, которое проходит нейтрон от точки замедления до точки захвата, называется диффузионной длиной. Диффузионная длина обычно значительно меньше длины замедления. Конечным результатом движения теплового нейтрона является поглощение его каким-либо ядром атома. При захвате нейтрона ядром выделяется энергия в виде одного или нескольких γ - квантов. Существуют следующие разновидности нейтронных методов: нейтронный гамма-метод НГМ, нейтронный метод по надтепловым нейтронам НМН, нейтронный метод по тепловым нейтронам НМТ. Они отл-ся друг от друга типом применяемых индикаторов. Импульсные нейтронные методы. Сущность импульсного нейтронного каротажа закл-ся в изучении нестационарных нейтронных полей и γ-полей, создаваемых генератором нейтронов. Генератор нейтронов работает в импульсном режиме с частотой от 10 до 500 Гц. В импульсных методах горная порода облучается кратковременными потоками быстрых нейтронов длительностью ∆t, следующими один за другим через промежутки времени t.