Разработка месторождений газоконденсатного типа
Расчеты показывают (рис. 1.35, б), что для давления 3 и 6 МПа (ветвь прямого испарения) для полного извлечения углеводородов С2 — С4 требуется существенно меньшее количество закачиваемого газа. Компоненты С5 — С8 (рис. 1.35, в) извлекаются при давлениях ниже давления максимальной конденсации полнее, чем при давлениях до максимальной конденсации ( в исследуемом диапазоне). И лишь наиболее тяжелые фракции (Ммол = 161 и выше) эффективно переходят в газовую фазу при более высоких пластовых давлениях. Так, для добычи всех запасов углеводородов С2 — С4 следует прокачать 0,3 относительной единицы измерения объема закачиваемого метана при давлении 3 МПа и около двух — при давлениях 16 и 22 МПа. Прокачка двух относительных единиц измерения метана позволяет извлечь 80 % фракции Ф, при давлениях воздействия 3 МПа, 65 % при 6 МПа, 60 % при 7,7 МПа, 57 % при 16 МПа и 72 % при 22 МПа. В целом, с учетом дополнительного извлечения при истощении до более низких давлений, при равном количестве закачиваемого сухого газа извлечение углеводородов С5+ в диапазоне давлений 3 — 7,7 МПа соизмеримо с извлечением при воздействии в диапазоне давлений 7,7 — 22 МПа (рис. 1.35, г).
Таким образом, исследования, с одной стороны, показали, что воздействие на газоконденсатный пласт неравновесным газообразным агентом (сухой газ) в областях прямого испарения не снижает удельную компонентоотдачу (на 1 м3 закачиваемого газа) пласта по сравнению с воздействием при более высоких пластовых давлениях. С другой стороны, технико-экономические показатели такого процесса, особенно для месторождений с целевыми продуктами углеводородов С2 — С8, могут оказаться существенно выше за счет снижения объемов консервируемого газа, возможности бескомпрессорной закачки и более высокого коэффициента охвата.
Был выполнен также большой объем теоретических и экспериментальных исследований с целью научного обоснования таких методов повышения конденсатоотдачи при разработке ГКМ, которые базируются на учете особенностей группового и компонентного состава пластовой углеводородной смеси, что позволяет повысить степень извлечения высокомолекулярных углеводородов этой смеси.
Как известно, многообразие составов природных газов определяет — наряду с особенностями вмещающих горных пород и термобарических условий залежей — физическое состояние в пласте газовой смеси, наличие и относительное содержание жидкой, а иногда твердой фазы в смеси. Естественно, что от состава углеводородной смеси зависит и конденсатоотдача пласта при разработке его на режиме истощения.
Среди других составляющих особую роль в природных газовых смесях играют промежуточные углеводороды — этан, пропан, изо- и нормальный бутан. Суммарное их содержание в газовых смесях газовых залежей составляет в среднем до 5 %, газоконденсатных 5 — 30 %; в растворенных газах нефтяных месторождений содержится от 10 —20 до 85 — 95 % промежуточных углеводородов [46, 16]. Количественное содержание в природных газах низкомолекулярных гомологов метана, в частности фракции С2 — С4, определяется условиями образования газовой и жидкой углеводородной смеси из органического вещества осадочных нефтегазоматеринских пород, а также условиями миграции и накопления углеводородов в пористых пластах залежей. Значительное влияние на физико-химические свойства и фазовое состояние и поведение пластовых газов углеводородов фракции С2 — С4 обусловлено тем, что эти компоненты достаточно легко переходят из газового состояния в жидкое и обратно при изменении в пласте термобарических условий (табл. 1.22). Соответственно вовлекаются в межфазный массообмен другие компоненты смеси, в первую очередь с относительно близкими к промежуточным углеводородам свойствами. По данным работ [31, 45] существует прямая связь между содержанием в пластовой газовой смеси фракции С2 —С4 и выходом стабильного конденсата (С5+) на первом этапе разработки некоторых ГКМ основных газодобывающих регионов стран СНГ.
Таблица 1.22
Некоторые физико-химические свойства низкомолекулярных алканов
Алканы | ||||||
Показатели |
метан |
этан |
пропан |
изобутан |
нормальный |
нормальный |
бутан |
пентан | |||||
Химическая формула Молекулярная масса |
16,04 |
30,07 |
С3Н, 44,09 |
CQ 4Г) JO,l£i |
л-С4Н,„ 58,12 |
«-С5Н, 72,15 |
Температура кипения при |
-161,3 |
-88,6 |
-42,2 |
-10,1 |
-0,5 |
+ 36,2 |
давлении 0, 1 МПа, °С | ||||||
Критические параметры: | ||||||
температура, К |
190,8 |
305,3 |
369,9 |
408,1 |
425,2 |
469,7 |
давление, МПа |
4,63 |
4,87 |
4,25 |
3,65 |
3,80 |
3,37 |
плотность, кг/м3 |
163,5 |
204,5 |
218,5 |
221,0 |
226,1 |
227,8 |
Теплота испарения при |
570 |
490 |
427 |
352 |
394 |
341 |
давлении 0,1 МПа, кДж/кг |