Исследование влияния состава флюида на показания термодебетомеров нефтяных эксплуатационных скважин
Анализ дебитограмм, снятых термокондуктивным дебитомером, показал, что эффективность выделения по ним отдающих интервалов зависит от условий измерения. В скважинах с однородной средой во всех случаях по измерениям аппаратурой СТД уверенно выделяются все работающие интервалы вскрытого пласта, профиль притока в этом случае характеризуется количественно. В безводных скважинах, в которых имеется застойная вода, и в скважинах, дающих нефть с водой, выделение отдающих интервалов усложняется, а дифференциация дебитограмм СТД в ряде случаев снижается.
А, Б–замеры резистивиметром. Условные обозначения см. рис. 6.
Рис. 8. Пример, иллюстрирующий снижение разрешающей способности термокондуктивного дебитомера при исследовании безводной скв. 139 Трехозерной площади при расположении притока под уровнем застойной воды.
Пример снижения разрешающей способности термокондуктивного дебитомера при исследовании скважины, фонтанирующей безводной нефтью под уровнем застойной воды, приводится на Рис. 8. Исследования проводились при режимах работы в 40 и 60 м3/сут. По дебитограмме СТД четко выделяется хвостовик насосно-компрессорных труб на глубине 1463 м. Наиболее четко притоки отмечаются в интервалах 1487–1489 и 1490– 1492 м при большом дебите. Дебитограммы при меньшем дебите менее дифференцированы. Нефте-водораздел в данной скважине располагается выше отдающих интервалов. Вместе с тем его положение изменяется в значительных пределах во времени, что подтверждается замерами как резистивиметром, так и дебитомером.
I–IV – номера групп диаграмм по таблице 7.
Рис. 9 Типовые формы дебитограмм, полученные с помощью термокондуктивного дебитомера.
В результате анализа большого количества дебитограмм СТД, снятых в скважинах при этих условиях, и сопоставления их с дебитограммами, полученными механическим дебитомером, а также с диаграммами, полученными гамма-плотностномером, влагомером и другими методами установлено, что все случаи можно свести к четырем (Рис. 9 и табл. 2). Они различаются значениями измеряемого сигнала ΔT в четырех характерных точках отдающего интервала: первая точка (ΔТ1) – под интервалом, вторая (ΔТ2)– против подошвы интервала, третья (ΔТ3) – против кровли интервала, четвертая (ΔТ4) – над интервалом. Эта классификация позволяет однозначно выделять интервалы притока и поглощения практически во всем многообразии производственных условий.
Таблица 2
Классификация форм дебитограмм, зарегистрированных термокондуктивным дебитомером для различных условий
Номер группы диаграмм |
Характеристика отдающего интервала, °С |
Примерные условия, при которых данные формы диаграмм встречаются |
I |
ΔT1 » ΔT2 ΔT3 < ΔT2 ΔT4 > ΔT3 ΔT4 < ΔT2 |
Притоки нефти и нефти с водой значительной величины (более 20 м3/сут). Среда однородная; эмульсия устойчивая. С ростом дебита разность ΔT0Η – ΔT4 увеличивается |
II |
ΔT1 < ΔT2 ΔT3 < ΔT2 ΔT4 > ΔT3 ΔT4 > ΔT2 |
Притоки нефти значительной величины. Если ΔΤ1 » ΔΤ0Β, то водонефтяной раздел расположен ниже работающего интервала. С ростом дебита разность ΔΤ0Η – ΔΤ4 увеличивается |
III |
ΔT1 » ΔT2 ΔT3 < ΔT2 ΔT4 » ΔT3 |
Слабые и средние притоки нефти, воды нефти с водой, интервал притока располагается под уровнем застойной воды. Аналогично отмечаются поглощающие интервалы |
IV |
ΔT1 ΔT2 ΔT3 < ΔT0 ΔT4 » ΔT3 » ΔT1 |
Слабые притоки нефти при большом удельном дебите. Интервал располагается под уровнем водонефтяного раздела |
Эффективность измерений термокондуктивным дебитомером снижается, если измерения проводятся в период неустановившегося притока, когда часто получаются невоспроизводимые результаты измерения. В связи с этим необходимо контролировать стабильность режима работы скважины по буферному давлению и суммарному притоку. Из-за влияния большого числа факторов в случае многофазного потока результаты исследования являются в основном качественными, по ним можно лишь установить наличие отдающего интервала, его границы и получить приблизительные представления о дебите (большой, малый). Особенно неблагоприятные условия в случае многофазного потока (нефть с водой), при наличии небольших перемычек между отдающими интервалами и малых удельных дебитов.
В ряде случаев при низком буферном давлении и значительной обводненности нефти приток из скважины не стабилен. Выделение отдающих интервалов по дебитограмме СТД затруднено и не всегда может быть успешно осуществлено. Такой пример показан на Рис. 118. Исследуемая скважина (Q = 75 т/сут, 38% воды) характеризуется нестабильным притоком, вследствие чего дебитограммы СТД 1, 2, 3, полученные последовательно, не повторяются в средней и верхней частях интервала перфорации, хотя действующие интервалы и видны. Надежно выявлены интервалы притоков подошвенной части. При измерениях Механическим дебитомером (РГД-1м) эти интервалы не выделяются. Таким образом, даже в указанных тяжелых условиях целесообразно применение аппаратуры СТД.
Повысить эффективность исследования скважин с застойной водой можно при условии выноса ее из интервала исследования переводом скважины на режим, при котором обеспечивается очистка интервала перфорации от воды, или другими способами.
Практическая часть
Определение зависимости приращения температуры ΔТ от коэффициента А для модели газа, воды и нефти
Обычно термокондуктивным дебитомером измеряется приращение сопротивления датчика или приращение температуры (в °С)
Для дебитомера получим:
где
Rж = 1000,85 Ом – электрическое сопротивление датчика при температуре потока Тж;
R0 = 1000 Ом – электрическое сопротивление датчика при температуре Т0 = 20°С;
А – коэффициент исследуемой среды взят из табл. 3;
v – линейная скорость потока;
α = 17·10–6 °С–1 – температурный коэффициент материала сопротивления датчика;
s = 5·10–5м2 – площадь поверхности датчика;