Зональность процессов выветривания и состав почвообразующих пород
Этот процесс, являясь чрезвычайно знаменательным и характерным для верхней оболочки литосферы, естественно обособляет эту оболочку от остальной ее массы, и эту-то обособленную оболочку мы и будем называть корой выветривания.
Итак, кора выветривания есть та верхняя часть литосферы, которая слагается рыхлыми продуктами раздробления изверженных и метаморфических пород.
Сопоставляя плотность этих изверженных и метаморфических пород с рыхлым состоянием коры выветривания, жидким состоянием гидросферы и газообразным атмосферы, мы убедимся, что по мере передвижения из глубин земной коры к ее периферии, материя стремится принять все более и более рассеянное или, иначе говоря, дисперсное состояние. И можно сказать, что различие между этими оболочками заключается, по преимуществу, в степени дисперсности материи. Количественный характер этого различия выявляется особенно ярко, если принять во внимание, что минералы изверженных и метаморфических пород заключают в себе рассеянные пузырьки жидкостей, паров и газов, что водные растворы, пары и газы циркулируют между твердыми частицами рыхлой коры выветривания, а атмосфере и гидросфере свойственны, как известно, распыленные твердые тела. Итак, каждая из этих оболочек представляет своеобразную сложную дисперсную систему, и эти дисперсные системы отличаются одна от другой не только по степени дисперсности материи, но и по свойствам дисперсионной среды и рассеянной в ней дисперсной фазы.
В глубоких частях литосферы дисперсионной средой является твердая масса, а дисперсная фаза представлена рассеянными включениями жидкостей и газов; гидросфера имеет своей дисперсионной средой жидкую воду, а дисперсными фазами здесь являются растворенные газы и твердые тела; атмосфера — газообразная среда с распыленными парами и твердыми телами. У этих оболочек границы между дисперсионной средой и дисперсными фазами ясны и достаточно определенны. Что же касается коры выветривания, то она как раз характеризуется неопределенностью этих границ, и в ее пределах переходы дисперсионной среды в дисперсную фазу обычны на сравнительно небольших пространствах. Так, например, в песке с порозностью в 30—40°/о дисперсионной средой является, несомненно, твердая масса, но в наносах, у которых порозность достигает 60°/о и более, твердая масса уже переходит в дисперсную фазу, а воздух или вода, заключенные в порах, становятся дисперсионной средой.
Все эти свойства и особенности коры выветривания являются, как мы это видели, результатом ее рыхлого раздробленного состояния. Но как ни значительно и ни характерно это состояние для коры выветривания, все же ни это состояние само по себе, ни те следствия, которые непосредственно из него вытекают, не являются достаточным материалом не только для полной, но и для общей характеристики этой оболочки. И для того, чтобы завершить эту характеристику, необходимо обратить внимание и на некоторые другие категории явлений.
3.1 Сера на земной поверхности.
Представим себе, что мы находимся где-либо в области действующих вулканических сил, хотя бы, например, в окрестностях Везувия, и наблюдаем действие сольфатор — выделение в парообразном состоянии ювенильной серы. Эти пары серы чуть ли не на наших глазах переходят сначала в жидкое, а потом в твердое состояние. Само собой разумеется, что этот процесс совершается при потере тепла. Образовавшаяся твердая сера не представляет на земной поверхности вполне устойчивого состояния. Рано или поздно, прямым химическим путем или при посредстве микроорганизмов она подвергается окислению, причем эта реакция окисления—соединения с кислородом — имеет экзотермический характер, т.е. сопровождается выделением тепла, и самый процесс окисления серы схематически можно выразить в следующей форме: S + 3O—> SO3-j-432kdg,' т. е. соединение 32.06 г серы с 48 г кислорода образует 80.06 г серного ангидрида и сопровождается выделением 432 килоджоулей тепловой энергии. Но получившийся серный ангидрид совершенно неустойчив: он, прежде всего, жадно соединяется с водой, переходя в серную кислоту—также энергичный деятель на земной поверхности, дающий путем взаимодействия с различными солями и их основаниями сернокислые соли, причем и эти превращения также отмечаются выделением тепла:
Образующиеся сернокислые соли (сульфаты) более устойчивы, но и они стремятся перейти в наиболее устойчивое состояние.
Термохимические уравнения, иллюстрируют известный закон: сумма материи и энергии есть величина постоянная. Этот закон как бы противоречит закону Лавуазье. В действительности, однако, можно говорить смело и о равенстве масс в правой и левой части с той только оговоркой, что величина массы в 432 кдж. является настолько ничтожной и несоизмеримой с массами серы, кислорода и серного ангидрида, что в ее о вое уравнение S + 3O_>SOa можно также считать безошибочным (масса, соответствующая 432 кдж., равняется 48 X Ю 9 г).форму, наименее растворимой соли—в данном случае сернокислый кальций:
Мы видим, таким образом, что ювенильная сера, достигшая земной поверхности, под влиянием кислорода воздуха и атмосферной воды претерпевает ряд превращений, изменяя как аггрегатное состояние, так и состав своих соединений с другими элементами, причем все эти превращения, сопровождаясь выделением тепловой энергии, приводят серу в состояние наиболее устойчивого и наиболее инертного в данных условиях соединения.
Сера на земной поверхности, в среде кислорода и в присутствии парообразной или капельно-жидкой воды, подобна камню, висящему над пропастью, заключает в себе запас некоторого количества потенциальной энергии. И как сорвавшийся камень и упавший на дно пропасти приходит в относительно покойное состояние, так и сера, расточив энергию во время своих превращений, переходит в наиболее инертное и наименее активное соединение. Мы имеем основание полагать, что приведенный пример характеризует вообще тот ряд превращений, которому подвергается материал ювенильного происхождения, когда он попадает на земную поверхность или в пределы коры выветривания. В результате таких экзотермических превращений выделяемая тепловая энергия должна отчасти переходить во внешние оболочки: гидросферу и литосферу, а отчасти рассеиваться в мировом пространстве и принимать участие уже в процессах космического порядка, а в коре выветривания должны накопляться наиболее инертные и малоподвижные состояния материи. И это отчасти подтверждается большим распространением на земной поверхности и в пределах коры выветривания кислородных, водных, карбонатных и других солеобразных соединений, которые, являясь результатом взаимодействия элементов литосферы с кислородом, водой и углекислотой атмосферы, действительно представляют собой мало активные соединения, соединения, если и способные вступать в реакции, то преимущественно лишь при условии притока энергии извне.
Эти соединения, погружаясь в течение последующих веков вместе с пластами заключающих их осадочных пород в более глубокие оболочки земной коры опять изменяя свои формы состояния и подвергаясь, перегруппировке элементов, принимают новые запасы энергии и снова расточают и рассеивают ее при возвращении в кору выветривания.