Золотая и медная минерализация геохимические и физические процессы
Однако золотые месторождения с наивысшими концентрациями золота образуются тогда, когда кипение гидротерм строго сосредоточено в ограниченном объёме гидротермальной системы и характеризуется энергичностью и растянутостью во времени. Плавный и тихий переход от однофазной к двухфазной зоне по мере уменьшения глубины, по-видимому, приводит, в лучшем случае, лишь к формированию рассеянных золоторудных отложений с низкими концентрациями. Для образования бонанзовых жильных месторождений необходимо, чтобы гидротермы подвергались резкому падению давлений, обусловливающему начало кипения на такой глубине, при которой вмещающие породы были бы достаточно нагретыми, чтобы гарантировать непрерывность кипения в течение значительного периода. Для объяснения падения давления в гидротермальной системе обычно рассматривается два разных механизма: тектоническое растяжение и гидротермальное дробление и брекчирование.
Большие промышленно значимые жилы образуются, если этот процесс регулярно повторяется. Он может быть вызван обоими механизмами. Повторные тектонические растяжения происходят регулярно, поскольку движения по разломам являются возобновляемым, периодическим процессом. Повторяющееся гидротермальное брекчирование может происходить в результате того, что гидротермальная система автоматически регулируется (рис.7).
Кремнезём более растворим при высоких температурах и различные его полиморфные разности имеют разную растворимость. Гидротермы, которые насыщены по отношению к кварцу на глубине, становятся пересыщенными и отлагают кремнезём, по мере того как они поднимаются вверх и остывают. В соответствии с законами кинетики отложения кремнезёма аморфный кремнезём является обычной фазой, контролируемой растворимостью на малых глубинах (рис.8).
Это приводит к изоляции кровли гидротермальных систем. Постоянный приток восходящих высокотемпературных гидротерм и накопление газов под окремнённой кровлей приводят к нагреву и повышению давления до тех пор, пока не произойдет разрушение этого образования. Накопление растворённых газов под временным верхним изолирующим слоем гидротермальных измененных пород, может способствовать дроблению. Оно может быть спровоцировано мелкими сейсмическими толчками, колебаниями земной поверхности, изменениями атмосферного давления или другими климатическими событиями или геоморфологическими процессами.
Отмечается, что энергетическая мощность тепловой разгрузки обычной гидротермальной системы может допускать очень частые гидротермальные взрывы. Через большую гидротермальную систему выделяется достаточное количество тепла, чтобы выбросить взрывом порядка 100000 м3 продуктов извержения в день.
При тектонических растяжениях или гидротермальном брекчировании гидротермы могут всасываться (вторгаться) в образованное открытое пространство. Если гидротермы достигают дневной поверхности, то возникают гидротермальные извержения. Питающие каналы в недрах гидротермальной системы возникают в зонах гидротермальных брекчий. Этот процесс может быть скрытым; не обязательно, чтобы гидротермы достигали дневной поверхности, только зоны с пониженным давлением являются исключением. Как только трещина открывается в сторону от зоны с высоким давлением, расположенной в недрах системы, в направлении зоны с пониженным давлением, расположенной выше по разрезу, может происходить вторжение в эту зону потока гидротерм. Этот процесс может продолжаться до тех пор, пока местный источник гидротерм не иссякнет, или породы на этом участке охладятся до такой степени, что содержащегося в них тепла будет не достаточно для поддержания процесса кипения, в связи, с чем их извержение прекратится. Тепло и давление могут вновь регенерироваться предположительно в течение сотен лет или около этого.
После таких временных нарушений гидротермальная система восстанавливает нормальную конвекцию гидротерм, в результате чего продолжается отложение кварца (рис.7). Регулярное повторение этих процессов приводит к образованию жил, заполненных ритмически полосчатым кварцем, которые характерны для эпитермальных месторождений и эти процессы ответственны за поликластическую и многостадийную природу брекчий.
Обычным недоразумением является мнение, что давление гидротерм в гидротермальной системе должно превышать литостатическое при гидротермальном брекчировании (Hedenquist, Henley, 1985; Nelson, Giles, 1985). Этот вывод неверен, поскольку для открытия трещины на глубине должно быть избыточным лишь небольшое общее напряжение плюс предел прочности пород на разрыв. Исключением из этого правила являются районы с необычными высокими тектоническими напряжениями в недрах системы, где горизонтальная компонента напряжения обычно меньше вертикальной составляющей, которая сопоставима с литостатическим давлением.
Обычно наименьшее напряжение сжатия будет следовать следующему правилу:
Uh = UvV/1-V,
где Uh - является наименьшим напряжением сжатия, Uv - литостатическая нагрузка, Vу - отношение Пуассона обычно колеблется от 0.2 до 0.3 (Fyfe et al., 1978). Кроме того, предел прочности на разрыв рассланцеванной или трещиноватой породы может быть очень небольшим. Поэтому трещины будут открываться тогда, когда давление гидротерм превысит критическое давление, которое может быть значительно меньше литостатического. Поскольку небольшое общее напряжение обычно направлено горизонтально, то трещины будут открываться перпендикулярно к этому направлению, т.е. вертикально. Соответственно, жилы в рудных месторождениях, в основном, субвертикальные.
5. Минералогические и текстурные индикаторы кипения
Очень часто промышленное золотое рудообразование связано с жилами, которые имеют минералогические индикаторы кипения. Они включают жильный адуляр и пластинчатый кальцит. Флюидные включения указывают на изменяющиеся двухфазные и однофазные условия, что определяется или концентрациями смеси газа или пара в них (т.е. большими колебаниями отношений жидкость/пар), или широким интервалом колебаний температур гомогенизации, которые значительно выше, чем об этом свидетельствуют ассоциации минералов. Более поздние включения захватывали долю пара во время роста кристаллов. Ритмическая полосчатость минеральных образований в жилах свидетельствует о регулярной повторяемости эпизодов кипения.
6. Формирование вторичных гидротерм в гидротермальных системах
Ранее отмечалось, что золото может отлагаться в результате смешения гидротерм с разными рН. Откуда берутся эти гидротермы?
Первичные гидротермы с почти нейтральным рН, также как и восходящие гидротермы, в гидротермальных системах могут образовать ряд вторичных гидротерм разнообразного состава (рис.2.9). Наиболее важные вторичные гидротермы образуются в результате кипения. В процессе кипения небольшая доля воды переходит в газовую фазу в виде пара вместе с доминирующей частью растворенных газов. Другие химические соединения (элементы соединений) остаются в водной фазе. Пар и газ стремятся подняться от воды. Когда пар и газ встречают выше расположенные или периферийные холодные подземные воды, пар конденсирует и часть газов растворённых в этих водах. Два наиболее важных геотермальных газа представлены сероводородом и углекислым газом. Оба имеют инверсионную (обратно пропорциональную) растворимость по отношению к температуре, т.е. они более растворимы в холодной воде, чем в горячей. Таким образом, концентрация растворённых газов в таких субповерхностных вторичных гидротермах может быть выше, чем в первичных гидротермах, которые их порождают, при условии, что ограничительные давления достаточны.