Твердые кристаллы
Рефераты >> Геология >> Твердые кристаллы

Порядок, закономерность, периодичность, симметрия расположения атомов - вот что характерно для кристаллов. Во всех кристаллах, во все твердых веществах частицы расположены правильным, четким строем, выстроены симметричным, правильным повторяющимся узором. Пока есть этот порядок существует твердое тело, кристалл. Нарушен порядок, рассыпался строй частиц -это значит, что кристалл расплавился, превратился в жидкость или испарился, перейдя в пар.

Одинаков ли порядок, строй атомов, в различных кристаллах? Конечно, нет. Природа бесконечно разнообразна и не любит повторений: строй атомов железа совсем не похож на постройку атомов кристалла льда. В каждом веществе есть именно свой характерный узор и порядок расположения атомов, и от того, каков этот порядок, зависят свойства вещества. Одни и те же атомы, частицы одного сорта, располагаясь по-разному, образуют вещества с совсем разными свойствами. Посмотрим например на атомы углерода: сажа или копоть - мягкий черный порошок; уголь - более твердый камень; графит - мягкий стерженек, оставляющий след на бумаге; алмаз- кристалл, твердостью которого восхищаются люди, крохотный кристаллик алмаза, вставленный в металлическую оправу, легко режет стекло. Все эти вещи состоят из атомов углерода, а разнообразие их свойств зависит от разнообразия кристаллической структуры.

К началу ХХ века об атомах знали совсем мало, и не было известно, что же именно группируется или правильно повторяется в пространстве, создавая геометрические формы и неизменные углы между гранями кристаллов, симметрию и анизотропию их свойств. И уж совсем ничего не было известно об атомном строении поликристаллических тел, у которых нет правильной внешней формы, - о технических металлах и их сплавах, о горных породах, о порошках.

В 1912 г. Физику Максу Лауэ и его ученикам Фридриху и Книппингу удалось доказать, что рентгеновские лучи претерпевают дифракцию на атомных решетках кристаллов. С тех пор отпала необходимость определять структуру кристалла по методу Федорова, основываясь на внешней форме. Английский ученый Виллиам Лоренс Брегг, изучая рентгеновсое облучение кристаллов сделал 2 интересных вывода: 1)различные атомные плоскости в кристаллах действуют как зеркала, отражая рентгеновские лучи; 2) Способность атом рассеивать рентгеновские лечи зависит от его атомного номера . Эти два заключения сделали анализ кристаллов по результатам рентгеновского облучения еще более детальным.

Лишь через пару месяцев после открытия Лауэ был найден способ определения расстояния между атомами (d) по рентгенограммам. Пучок рентгеновских лучей с длинной волны l, отражающихся от серии параллельных атомных плоскостей, отстоящих друг от друга на одинаковые расстояния d, будет усиливаться, если выполняется простое геометрическое соотношение, которое теперь носить названия формулы Вульфа - Брегга:

nl=2dsinq

Здесь n - целое число, а q - угол между лучом и отражающей атомной плоскостью. Если знать длину волны рентгеновских лучей, а величины n и q измерить на опыте, то по рентгенограмме можно определить расстояние между атомными плоскостями в кристалле. Это и удалось сделать Бреггу и он получил значение d=2.8*10-8 сантиметра.

Так родилась структурная (рентгеновская) кристаллография - определение структур кристаллов с помощью рентгеновских лучей.

Симметрия структуры кристалла отражается в его внешней форме, но и в отсутствии внешней характерной формы кристалл остается кристаллом, потому что сохраняется симметрия его структуры и его физические свойства.

Кристаллическое состояние является нормальным состоянием твердого вещества, аморфное - нарушенным, временным состоянием. Поэтому в кристаллическом состоянии вещество обнаруживает свои физические свойства в самом чистом виде и в самых богатых сочетаниях, а в аморфном же веществе свойств как бы затуманены.

Структура кристалла определяет его свойства и форму. Однако, кристаллическая структура обнаружена не только в природных многогранниках камней, в кристаллических горных породах и металлах, но и в очень многих других телах, о которых никому и в голову не приходило подумать, что они состоят из кристаллов. Вот, например, глина, она не похожа на кристалл, но и она состоит из мельчайших кристаллических частичек. Даже в таких вещах, как сажа, человеческие кости, волосы, волокна шерсти, шелк, целлюлоза и т. п., обнаружено кристаллическое состояние.

Теория плотнейших шаровых упаковок.

Рентгенограммы кристаллических веществ и их расшифровка на основе федоровских законов построения пространственной решетки позволяют судить о симметрии кристаллических структур. Но это только остов, скелет структуры кристалла. Каковы же свойства частиц из которых сложены кристаллические решетки? Чем обусловлены геометрические структуры строения кристаллов? Какова природа сил, связывающих эти частица? На эти и многие другие вопросы отвечает кристаллохимия.

Неоценимым вкладом в развитие кристаллохимии являются работы академика Николая Васильевича Белова по обоснованию и углублению теории плотной упаковки частиц в кристаллах. Геометрическая задача о максимальном заполнении пространства шарами имеет множество решений, но только два из них имеют для кристаллографии наибольшее значение.

Хорошо известно, что плотность газов меняется очень сильно, в тысячи и более раз. Уплотнить жидкость уже значительно труднее: частицы расположены здесь гораздо плотнее, чем в газе. В твердых же телах частицы расположены наиболее плотно, максимально близко друг к другу.

Атомы и ионы каждого элемента характеризуются определенным размером – сферой действия, внутрь пределов которой не могут проникать другие частицы. Известно также, что размеры анионов (отрицательно заряженных ионов) значительно превышают размеры катионов (положительных ионов). Представим себе катионы и анионы в виде шаров соответствующих радиусов. Как можно уложить такие шары наиболее плотно?

Начнем с шаров одинакового радиуса. Ясно, что в одном слое можно наиболее плотно уложить равновеликие шары лишь одним способом: каждый шар окружен в слое шестью ближайшими соседями, между ним и его соседями имеются треугольные промежутки. Попробуем теперь закрыть этот плотно упакованный слой вторым слоем, тоже наиболее плотно упакованным. Очевидно, шары второго слоя должны попасть в углубления между шарами первого слоя. Это можно так же сделать лишь одним способом: взять аналогичный первому слой и сдвинуть его так, чтобы «верхушки» шаров второго слоя попадали как раз в углубления между шарами первого слоя. У каждого верхнего шара будут три одинаковых соседа в нижнем слое, и наоборот, каждый нижний шар будет соприкасаться с тремя верхними. Третий плотно упакованный слой можно уложить уже двумя способами: В варианте а каждый шар третьего слоя лежит на трех шарах второго слоя таким образом, что под шаром третьего слоя нет шара в первом слое. В варианте б каждый шар третьего слоя так же лежит на трех шарах второго слоя, однако, под каждым шаром третьего слоя оказывается шар в первом слое. Первый вариант называется кубической упаковкой, второй – гексагональной.


Страница: