Симметрия в неживой природе
Рефераты >> Геология >> Симметрия в неживой природе

Однако практически достаточно знать глубины выклинивания известных рудных тел, чтобы определить места возможного нахождения «слепых» рудных тел, принадлежащих этим симметричным сериям. Очевидно, что поиск рудных тел таким методом будет в этих случаях во много раз эффективнее, чем поиск путем разбуривания рудного поля по сетке, не увязанной с симметрией его структура.

Учтя такую возможность, мы сможем в этом случае выявить все рудные тела с минимальной затратой сил и средств.

Выявление симметрии размещения и внутреннего строения тектонических структур и других геологических образований, контролирующих размещение полезных ископаемых, помимо теоретического интереса, имеет и огромное прикладное значение и поэтому должно считаться одной из первоочередных задач геологической науки на современном этапе ее развития.

5. СИММЕТРИЯ ЗЕМЛИ КАК ПЛАНЕТЫ

Обзор законов симметрии, проявляющихся на конкретных теологических объектах, следует начать с рассмотрения вопроса о симметрии Земли как планеты в целом. Ведь именно Земля как планета является наиболее высокой таксономической категорией в существующей классификации морфологических геотекстур земного рельефа.

Форма Земли, отождествлявшаяся прежде с идеальным шаром (отсюда и название «земного шара»), позднее уподоблялась эллипсоиду вращения, трехосному эллипсоиду, геоиду. Наблюдения с помощью искусственных спутников установили ее принадлежность к кардиоиду или кардиоидальному эллипсоиду, в котором южное полушарие более сжато, чем северное.

Однако, как увидим далее, ряд характерных явлений, наблюдающихся на поверхности Земли, обусловлен ее близостью к шару и эллипсоиду. Поэтому приступая к выявлению симметрии зашей планеты в целом, нам придется учесть и симметрию идеального шара, и симметрию эллипсоида вращения и трехосного эллипсоида, и симметрию более сложных фигур.

Как согласовать между собой эти различные виды симметрии, относящиеся к одному и тому же объекту — фигуре Земли?

Упоминаемые далее различные виды симметрии фигуры Земли отражают различные степени приближения к объективной реальности. Вместе с тем важно заметить, что каждая из этих степеней приближения имеет вполне определенный физический смысл а сопоставление их позволяет проанализировать динамику формирования фигуры Земли, т. е. природу формирующих ее сил.

Приближение фигуры Земли к сферической форме обусловлено гравитационным полем Земли, т. е. притяжением всех составляющих ее материальных частиц друг к другу. Если бы было возможно изолировать Землю от влияния всех внешних факторов, в том числе и гравитационного воздействия всех других космических тел, и остановить все ее движения, то под воздействием собственного гравитационного поля Земля рано или поздно приняла бы форму идеального шара. Таким образом, приближение фигуры Земли к сферической форме отражает действие собственного гравитационного поля Земли.

Приближение фигуры Земли к форме эллипсоида вращения обусловлено вращением Земли вокруг ее географической оси. Возникающие при вращении центробежные силы растягивают Землю в экваториальной плоскости. Если бы на Землю воздействовало только ее собственное гравитационное поле и единственным ее движением было вращение вокруг оси, то она имела бы форму идеального эллипсоида вращения. Таким образом, приближение фигуры Земли к форме эллипсоида вращения отражает взаимодействие собственного гравитационного поля Земли с центробежными силами, вызываемыми ее вращением.

Количественное выражение отклонения земного эллипсоида от сферической формы, определяемое отношением разности экваториального и полярного радиусов Земли к экваториальному радиусу, составляющее около 1/297, выражает также относительное значение роли центробежных сил и собственного гравитационного поля Земля в формировании ее фигуры. Небольшая по отношению к среднему радиусу разность экваториального и полярного радиусов довольно значительна в ее абсолютном значении (около 21 км).

Рассматривая отклонения фигуры Земли от идеального эллипсоида вращения, мы должны учесть, что гравитационное поле, воздействующее на любую материальную точку Земли и играющее, наиболее существенную роль в формировании этой фигуры включает в себя кроме собственного гравитационного поля Земли гравитационные воздействия всех других космических тел, причем наиболее значительны воздействия Солнца и Луны.

Следует помнить и о вращение Земли вокруг собственной оси.

Рассмотрим взаимодействие гравитационных и центробежных сил воздействующих на Землю, движущуюся по ее околосолнечной орбиты (рис. 3).

В системе Солнце — Земля действуют те же гравитационные и центробежные силы, с которыми мы имели дело, рассматривая взаимодействие собственного гравитационного поля Земли и центробежных сел, связанных с ее вращением. На рис. 3. Земля может рассматриваться как часть вращающегося диска, совпадающего с плоскостью эклиптики, испытывающая растяжение под влиянием противоположно ориентированных центробежных (инерционных) и центростремительных (гравитационных) сил. И те и другие имеют максимальное значение на линии, проходящей через центры Солнца и Земли. В то же время величины их одинаковы, чем и обусловливается устойчивое нахождение Земли на орбите. Поэтому их взаимодействие направлено на придание земной сфере формы эллипсоида, удлиненного вдоль оси системы Солнце — Земля, а земному эллипсоиду — формы трехосного эллипсоида.

Аналогичное воздействие на форму Земли оказывают гравитационные и инерционные силы, проявляющиеся в системе Земля -Луна.

Вхождение Земли в системы Солнце — Земля и Земля - Луна обусловливает воздействие на нее гравитацнонно-инерционных силовых полей, обладающих симметрией эллипсоидов вращения, удлиненных вдоль осей вращения, совпадающих соответственно с осями этих систем

Рис. 3. Схемы гравитационно-ннерционного растяжения Земли вдоль оси Солнце — Земля (а), распределения приливообразующих сил на сферической недеформируемой Земле (б) и перемещении материальных точек поверхности Земли под действием приливообразующих сил (в).

Полные величины сил, растягивающих Землю вдоль осей Солнце— Земля и Земля — Луна, равны величинам центробежных л, действующих в соответствующих системах и уравновешиваемых гравитационными взаимодействиями. Они могут быть определены по формуле гравитационного взаимодействия

F = G m1* m2 / R2

Соответствен растягивающая сила, действующая на Землю вдоль оси Солнце Земля составляет около 3,5-1027, вдоль оси Земля — Луна — 2*125 дин.

В предыдущем рассуждении мы пренебрегли изменениями расстояний от Солнца и Луны до Земли, выраженными, в частности, в эллиптичности земной и лунной орбит. Эти изменения должны рассматриваться как свойственные любым механическим системам колебания около положения равновесия. Эллиптичность орбит соответствует основным тонам этих колебаний. Обертоны выражаются наложением на эллиптические орбиты синусоидальных отклонении различных порядков. Рассмотрение симметрии всех этих колебаний несложно, и мы здесь на нем не останавливаемся.


Страница: