Основные современные тенденции совершенствования конструктивных решений зданийРефераты >> Строительство >> Основные современные тенденции совершенствования конструктивных решений зданий
Средний слой во всех случаях запроектирован из пенополистирола марки ПСБ-С, как наиболее эффективного, надежного и доступного материала. Однако известные нам данные по его долговечности получены для температурно-влажностных режимов, отличающихся от реальных. Выполненные нами испытания, моделирующие условия эксплуатации утеплителя в стене, показали, что долговечность пенополистирола в стенах составляет не менее 25-30 лет.
Утеплитель снаружи и изнутри защищен бетонными пластинами толщиной не менее 60 мм, со стороны оконных и дверных проемов предусмотрен защитный слой бетона той же толщины. Это исключает возгорание пенополистирола при воздействии огня. При повышении температуры до 90-100 °С происходит его сухая возгонка, что в дальнейшем будет требовать ремонта локальных участков, но препятствует распространению огня. Вид и характеристики бетона защитного слоя со стороны проемов подбираются из технологических соображений и из условий обеспечения требуемого теплосопротивления.
В многослойных стеновых конструкциях, представляющих собой комбинацию тонкослойных элементов, не в полной мере исследованы особенности анкеровки закладных деталей и монтажных петель, не отраженные в известных методиках расчета. Для всех конструкций работа этих элементов проверена экспериментально.
Сами тонкослойные элементы достаточно деформативны. При транспортировании и любых перемещениях их упругие деформации приводят к появлению на границах слоев трещин расслаивания, которые лишают конструкцию соответствующего товарного вида. Поэтому, хотя такие деформации не являются опасными, в конструкциях приходится предусматривать специальные связи. Проверка запроектированных конструкций при транспортировании (в том числе из г. Екатеринбурга в г. Тюмень), показала удовлетворительные результаты.
Стеновые панели или крупноразмерные блоки являются частью стенового ограждения. При проектировании этих элементов большое внимание уделялось узлам сопряжения сборных элементов друг с другом и с примыкающими конструкциями. Требуемые теплотехнические характеристики обеспечивались для стенового ограждения в целом, с учетом решения узлов.
Работа конструкций при эксплуатационных воздействиях во всех случаях проверялась экспериментально. В первую очередь исследовались специфические вопросы, определяемые многослойным решением. Для стен из крупных блоков исследования проводились на фрагментах стен, позволяющих рассмотреть особенности совместной работы многослойных элементов.
Кроме исследования работы конструкции стеновой панели и ее отдельных элементов при проектировании конструкций учитывалась необходимость жесткой увязки конструктивного решения с технологией изготовления конструкций при многочисленных ограничениях, накладываемых существующей бортоснасткой, оборудованием, привычными приемами работ. Для отдельных конструкций разработан технологический регламент. Технологическим вопросом, общим для всех конструкций, является укладка и фиксация утеплителя. Решение этого вопроса оказалось возможным или путем установки специальных фиксирующих элементов, или использованием бетонных смесей различной подвижности при разных способах уплотнения.
Теплотехнические характеристики конструкций проверялись расчетным и экспериментальным методами. Для оценки теплотехнических параметров неоднородных конструкций в институте разработана специальная программа расчета на ЭВМ, основанная на построении температурного поля фрагмента. Однако существующие подходы, хотя они и используются повсеместно, дают для неоднородных конструкций, как показывают наши исследования, заниженные результаты. Поэтому все разработанные конструкции, помимо расчета, исследованы экспериментально на образцах натурных размеров. Исследовались не только отдельные конструкции, но и фрагменты ограждения с узлами сопряжения и примыкающими элементами.
В настоящее время институт продолжает работы в направлении совершенствования ограждающих конструкций. Сейчас ведутся работы по проектированию стеновых панелей для серии жилых домов 141 СВ. Стеновые панели толщиной 280 мм предусмотрены трехслойными с гибкими стеклопластиковыми связями, при этом используются результаты наших исследований таких связей. Уже выполненные испытания натурных конструкций подтвердили работоспособность этих конструкций. Другим направлением работ в данном направлении являются исследования свойств конструкционного полистиролбетона как эффективного заменителя тяжелого бетона или керамзитобетона в сборных элементах стенового ограждения.
Основные выводы:
1. Трехслойные стеновые панели являются наиболее перспективными сборными конструкциями, которые удачно сочетают в себе высокую прочность, жесткость, трещиностойкость и необходимое теплосопротивление при незначительной толщине.
2. Существующие в настоящее время способы расчета трехслойных стеновых панелей требуют совершенствования на основе изучения их напряженно-деформированного состояния, что позволит снизить их материалоемкость, повысить эффективность и надежность.
3. Исследование работы трехслойных стеновых панелей, создание методов их расчета требует системного подхода, который возможен при постоянном финансировании - региональном или федеральном.
4. Совершенствование трехслойных стеновых панелей требует применения при их изготовлении новых материалов, свойства которых также должны изучаться.
5. В настоящее время существуют новые базовые решения трехслойных стеновых панелей, удовлетворяющих требованиям современных теплотехнических норм, разработанных в ОАО институт "УралНИИАС", которые успешно применяются в строительстве и могут послужить основой для создания более совершенных конструкций.
3. Эффективные системы зданий и пути их совершенствования
Приказом министра архитектуры и строительства в 1999 г. была утверждена проектно-техническая документация серии Б1.020.1-7 [1], а институт "Минсктиппроект" начал распространять эту документацию по заявкам проектных и производственных предприятий Республики Беларусь. Изначально при постановке задачи на разработку новой конструктивной системы жилых и общественных зданий требовалось обеспечить гибкие планировочные решения и уменьшить удельную массу зданий в 1,7–2,0 раза. Кроме того, при разработке следовало предусмотреть максимальное использование традиционной продукции стройиндустрии и стройматериалов.
Чтобы решить поставленную задачу, необходимо было [2] создать единый несущий каркас с плоскими перекрытиями, способный воспринять все приложенные к зданию расчетные нагрузки и воздействия и обеспечить его пространственную жесткость и устойчивость. Плоские перекрытия в таком каркасе позволяют размещать ограждающие конструкции (наружные стены и перегородки) в любом месте, определяемом объемно-планировочными решениями. Поскольку наружные стены в каркасных зданиях можно выполнять поэтажно опертыми или навесными, они освобождены от восприятия общих нагрузок на здание и могут быть выполнены из легких малопрочных, но энергоэффективных материалов и изделий.