Электротехника в строительстве
Рефераты >> Строительство >> Электротехника в строительстве

Наиболее эффективным и экономичным способом электротермообработки является электродный прогрев. Применение постоянного тока при этом не допускается, так как он вызывает электролиз воды и других компонентов, содержащихся в бетоне.

При электродном прогреве бетон с помощью стальных электродов включается в цепь переменного тока. Одним из основных исходных параметров при расчете электродного прогрева бетона является его удельное электрическое сопротивление.

Величина удельного электрического сопротивления бетона определяется главным образом количеством воды, концентрацией в ней электролитов и температурой. В течение первых 2-5 часов прогрева бетона его начальное удельное электрическое сопротивление снижается до минимального значения, а в дальнейшем повышается.

Величина начального удельного электрического сопротивления бетона колеблется в пределах от 400 до 2500 Ом-см (минимального- от 200 до 1800 Ом-см). При расчете электродного прогрева бетона в качестве исходного параметра принимается расчетное удельное сопротивление

Выдерживание температуры бетона в соответствии с заданным режимом электротермообработки может осуществляться следующими способами:

изменением величины напряжения, подводимого к электродам или электронагревательным устройствам;

отключением электродов пли электронагревателей от сети по окончании подъема температуры;

периодическими включением или отключением напряжения на электродах или электронагревателях.

Перечисленные способы выдерживания заданного режима могут осуществляться как автоматически, так и вручную.

Для электропрогрева бетона используются специальные силовые трансформаторы. В зависимости от требуемой мощности могут применяться как трехфазные, так и однофазные трансформаторы.

Трехфазный трансформатор ТМТ-50 мощностью 50 кВ•А имеет две вторичные обмотки с разным числом витков. При соединении этих обмоток в звезду или треугольник можно соответственно получать напряжения 50,5 пли 87,5 В и 64,5 или 106,6 В.

Широко используется трехфазный трансформатор типа ТМОА-50 с алюминиевой обмоткой мощностью 50 кВ•А. В отличие от трансформатора ТМТ-50 регулирование напряжения в нем осуществляется за счет изменения не только схемы соединения вторичной обмотки, но и коэффициента трансформации. При этом вторичное напряжение может изменяться от 49 до 127 В.

Передвижная установка для прогрева бетона помимо трансформатора содержит распределительный щит с коммутационной, защитной и измерительной аппаратурой. Принципиальная электрическая схема такой установки показана на рис. 2. Распределительный щит рассчитан на присоединение нескольких отходящих линий к софитам - устройствам, служащим для присоединения электродов.

Очень часто установки для электропрогрева бетона комплектуются из однофазных трансформаторов ТБ-20 мощностью 20 кВ•А. Он имеет первичную обмотку, предназначенную для включения в сеть напряжением 380 или 220 В, и две вторичных обмотки, соединяя которые последовательно или параллельно, можно получить 102 и 51 В.

Для прогрева бетона могут использоваться также сварочные трансформаторы. При этом необходимо учитывать, что сварочные трансформаторы рассчитаны на повторно-кратковременный режим работы. Поэтому в длительном режиме прогрева бетона нагрузка на сварочные трансформаторы не должна превышать 60-70% от номинальной.

Для подачи напряжения к софитам рекомендуется применение гибких кабелей с резиновой изоляцией марки КРПТ, что повышает безопасность эксплуатации и простоту прокладки временных линий.

6. При модуле поверхности конструкций в пределах 6-15 электропрогрев должен вестись в трехстадийном режиме

1) разогрев;

2)изотермический прогрев;

3) остывание;

В этом случае заданная прочность бетона будет обеспечена к концу стадии остывания. При этом подъем температуры следует производить возможно быстрее, а изотермический прогрев вести при максимально-допустимой для данной конструкции температуре.

7. Подъем температуры бетона конструкций с-модулем поверхности мене и большой протяженностью не должен превышать 5 °С в час, а при модуле свыше 5 - не более 8 °С в час. Для конструкций небольшой протяженностью (6-8 м) и сильно армированных, а так же для сварного железобетона можно увеличить скорость подъема температуры до 15 °С в час.

Во избежание недопустимо резкого подъема температуры бетона в начале прогревa и для снижения пиковой мощности при прогреве применяют вначале напряжение 50-60 В, увеличивая его по мере твердения бетона.

8. Длительность изотермического прогревa устанавливается строительной лабораторией и зависит от температур наружного воздуха табл.1.

8. Скорость остывания бетона по окончании изотермического прогрева, не должна превышать 3° в час для конструкций с модулем до 3-6 °С ; в час - при модуле от 3 до 8; 8° в час - при модуле более 8.

Интенсивность остывания бетона регулируется изменением напряжения, тока или периодическим его включением.

4. Определение мощности и расхода электроэнергии при электропрогреве бетона

Электротермообработку бетона наиболее целесообразно производить до приобретения им прочности 50-60 % от проектной, так как при дальнейшей тепловой обработке интенсивность твердения замедляется и расход электроэнергии соответственно возрастает. Во всех случаях температура бетона является основным параметром, по которому регулируются подача электроэнергии и заданный режим. Расчет электротермообработки бетона сводится к определению требуемой мощности на нагрев бетона, опалубки и на восполнение теплопотерь в окружающую среду с учетом тепловыделения цемента, а также к определению параметров тока и устройств, обеспечивающих выделение тепла соответственно требуемой мощности (напряжение, сила тока; тип и места размещения электродов или электронагревательных устройств, их характеристики). При электротермообработке бетона особое внимание уделяют изоляции неопалубленных поверхностей для предотвращения пересушивания бетона, а также теплоизоляции бетонируемой конструкции с целью обеспечения выдерживания заданного режима при минимальном расходе электроэнергии и повышении равномерности температурного поля в бетоне. Изоляцию делают из термоизолирующих материалов.

5. Электрический прогрев грунта

Отогрев грунта электрическими токами промышленной частоты при помощи стальных электродов, уложенных горизонтально на мороженый грунт, заключается в создании цепи электрического тока, где отмораживаемый грунт используется как сопротивление. Горизонтальные электроды из полосовой, угловой и любых других профилей стали длиной 2,5-3 м укладывают горизонтально на мерзлый грунт. Расстояние между рядами электродов, включаемых в разноименные фазы, должно быть 400 - 500 мм при напряжении 220 В и 700-800 мм при напряжении 380 В. Ввиду того что мерзлый грунт плохо проводит электрический ток, поверхность грунта засыпается слоем опилок, смоченных в водном растворе соли толщиной 150-200 мм. В начальный период включения электродов основное тепло передается в грунт от опилок, в которых под влиянием электрического тока возникает интенсивный разогрев. По мере разогрева грунта, повышения его проводимости и проходящего через грунт электрического тока интенсивность разогрева грунта повышается.


Страница: