Одноэтажное каркасное производственное здание
Рефераты >> Строительство >> Одноэтажное каркасное производственное здание

3. Определение периода собственных колебаний и форм колебаний

Для грунтов II категорий по сейсмическим свойствам:

при Тi £ 0,1 с bi = 1 + 1,5Тi

при 0,1 с < Тi < 0,4 с bi = 2,5 (1)

приТi ³ 0,4 с bi = 2,5 (0,4/ Тi) 0,5

Во всех случаях значения bi должны приниматься не менее 0,8.

Расчетную схему здания представляем в виде вертикального консольного стержня с сосредоточенной горизонтальной нагрузкой, приложенной к его верху.

Рисунок 1.1 - Расчетная схема здания

Для расчета принимаем одну раму и сбор нагрузок осуществляем для грузовой площади с шириной 6 м. Определим ярусные нагрузки на уровне покрытия, затем произведем их суммирование. От веса покрытия без учета фермы (с учетом коэффициентов сочетаний: 0,9; 0,8 и 0,5):

где 9 м - ширина здания, 6 м - шаг колонн;

от веса фермы (масса фермы сегментной безраскосной длиной 9м принята равной 4т в соответствии с [1]):

от веса наружных стеновых панелей для всей высоты этажа:

;

от веса колонн длиной, равной половине высоты этажа:

;

Итого G =969,68кН. Для определения периода собственных колебаний и форм колебаний необходимо вычислить жесткость конструкций. Для конструкций зданий в данном районе применён легкий бетон класса В30 с использованием мелкого плотного заполнителя с начальным модулем упругости Еb=32500МПа. Приняты колонны сечением 400х400мм, тогда

Для панелей наружных стен

Перемещение колонны и двух наружных стен от единичной силы

Соответствующая жесткость

.

Период собственных колебаний здания определяется по формуле

сек,

где g - ускорение свободного падения.

Так как T<0,1c то коэффициент b = 1 + 1,5∙0,02=1,03

При расчете зданий и сооружений (кроме гидротехнических сооружений) длиной или шириной более 30 м помимо сейсмической нагрузки необходимо учитывать крутящий момент относительно вертикальной оси здания или сооружения, проходящей через его центр жесткости. Значение расчетного эксцентриситета между центрами жесткостей и масс зданий или сооружений в рассматриваемом уровне следует принимать не менее 0,1 В, где В - размер здания или сооружения в плане в направлении, перпендикулярном действию силы Sik. При длине здания 48 м эксцентриситет эксцентриситет e0=0,1x48=4,8м. Крутящий момент от воздействия всей сейсмической нагрузки Tik=4,8ΣSik должен восприниматься колоннами каркаса в виде дополнительных поперечных сил ΔQik=Tik/l=0,96ΣSik=ΔSik. Можно вычислить значение коэффициента, учитывающего влияния случайного крутящего момента:

Согласно [10] расчетная сейсмическая нагрузка Sik в выбранном направлении, приложенная к точке k и соответствующая i-му тону собственных колебаний зданий или сооружений, определяется по формуле

Sik = χTK1 S0ik,

где К1 - коэффициент, учитывающий допускаемые повреждения зданий и сооружений, принимаемый по табл.3 [10] ; для зданий и сооружений, в конструкциях которых могут быть допущены остаточные деформации и повреждения, затрудняющие нормальную эксплуатацию, при обеспечении безопасности людей и сохранности оборудования, возводимых из железобетонных крупнопанельных или монолитных конструкций К1=0,22.

S0ik - значение сейсмической нагрузки для i-го тона собственных колебаний здания или сооружения, определяемое в предположении упругого деформирования конструкций по формуле

Soik = Qk AbiKwnik,

где Qk - вес здания или сооружения, отнесенный к точке k, определяемый с учетом расчетных нагрузок на конструкции;

А - коэффициент равный 0,1 для расчетной сейсмичности 7 баллов;

bi - коэффициент динамичности, соответствующий i-му тону собственных колебаний зданий или сооружений;

Кw - коэффициент равный 1,3 для каркасных зданий, стеновое заполнение которых не влияет на их деформативность.

С учетом коэффициентов получаем

Sok = 969,68∙0,1∙1,03∙1,3∙1=129,84кН.

Sk = χT∙K1 S0k= 1,96∙128,06∙0,22=55,22 кН.

4. Усилия в сечениях элементов рамы от сейсмической нагрузки

Так как расчетные сейсмические нагрузки по п.2.3 [10] принимаются, действующими в горизонтальном направлении, вертикальная составляющая сейсмических сил не учитывается. Так же не учитывают по п.2.4 [10] вертикальную сейсмическую нагрузку для рам пролетом менее 24 м.

Рассчитываем наиболее напряженную колонны первого этажа Поперечные силы в сечениях колонн рамы:

кН

Так как ригель опирается на колонны шарнирно, изгибающие моменты в сечениях колонн рамы:

кН∙м кН∙м

5. Проверка прочности колонн с учетом сейсмических нагрузок

5.1 Подбор площади сечения арматуры колонн

Продольная сила в сечении средней колонны первого этажа (кН) при особом сочетании нагрузок:

от веса совмещенной кровли: 4137∙24∙6∙0,9 = 536,16кН;

от веса снегового покрова: 0,5∙0,9∙24∙6∙0,9 =58,32 кН;

от веса колонны:

от веса стеновых панелей: ;

от веса фермы 100/2=50 кН;

Итого:

N=536,16+58,32+106,18+132,72+50=883,38 кН (в том числе длительная Nl=825,06 кН).

Принята нулевая привязка колонн продольного ряда, поэтому опирание фермы на колонну осуществляется по всей ширине и момента от покрытия в колоннах не возникает

Поперечная сила

Подбираем площадь сечения арматуры колонны

Бетон: класса В30 с17 МПа; 1,15 МПа; 32500 МПа

Арматура:

класса А400 с 355 МПа; МПа;

Сечение колонны 400х400 мм с 5 м и см4. Для продольной арматуры принимаем а = а’ = 40 мм, тогда рабочая высота сечения h0 = h - a = 400 - 40 = 360 мм


Страница: