Статистический анализ показателей использования производственных ресурсов
Рефераты >> Журналистика >> Статистический анализ показателей использования производственных ресурсов

Можно констатировать, что очень тесная связь (коэффициент парной корреляции больше 0,9) наблюдается между выручкой и численностью работающих для группы, образованной всеми предприятиями, и между выручкой и размером собственного капитала и выручкой и численностью работающих по группе книжно-журнальных предприятий.

Коэффициент корреляции величиной от 0,7 до 0,9 характеризует тесную связь между изучаемыми показателями. Таковая имеет место по всей совокупности предприятий и по группе книжно-журнальных типографий во всех комбинациях признаков, кроме упомянутых.

Группа газетных предприятий отличается тем, что тесная связь свойственна только комбинации выручка-собственный капитал и выручка-численность работающих. В других случаях теснота связи либо умеренная (значение коэффициента парной корреляции от 0,5 до 0,7), либо слабая - r<0,5 (выручка-производственная площадь).

Критерий rik>0,8 превзойден лишь в одном случае - сильная корреляция наблюдается по группе книжно-журнальных предприятий между факторными признаками собственный капитал и численность работающих. Однако очень близкими к рубежу 0,8 находятся по крайней мере еще четыре значения коэффициентов парной корреляции. Все это свидетельствует о необходимости количественной оценки гипотезы о наличии мультиколлинеарности.

Один из вариантов проверки предложен Фарраром и Глаубером (7). Для выполнения проверки строится симметричная матрица, состоящая только из коэффициентов парной корреляции между факторными признаками, при этом на главной диагонали помещаются единицы, и вычисляется ее определитель D. Затем рассчитывается величина критерия c2 расч по формуле:

c2 расч = - (n-1-(1/6)*(2m+5))*lnD,

где n - количество объектов в изучаемой совокупности, m - число факторных признаков. Расчетное значение критерия сравнивается с табулированной величиной при числе степеней свободы f = 0,5*m*(m-1). Если c2расч > c2табл, то наличие мультиколлинеарности не отрицается.

Для случая двухфакторных моделей c2 табл =3,84. Если модель трехфакторная, c2табл =7,82. В обоих случаях уровень значимости принят равным 0,05, т.е. вероятность гипотезы об отсутствии мультиколлинеарности не превышает 5%. В табл. 4 представлены расчетные значения критерия c2расч при различных объемах совокупностей для двухфакторных моделей.

Сравнивая значения критерия из табл. 4 с табулированными величинами, можно заметить, что явление мультиколлинеарности заставляет говорить о себе даже при незначительной величине коэффициента парной корреляции, если число объектов в совокупности достаточно велико. В зоне отраслевого анализа, где количество объектов измеряется считанными десятками, мультиколлинеарность можно подозревать при самой умеренной тесноте связи, когда коэффициент парной корреляции едва достигает значения, близкого к 0,5.

Эконометрические модели зависимости выручки от факторов производства

В табл. 5 приведены уравнения зависимостей для всех групп рассматриваемых предприятий и всех сочетаний производственных факторов: одно-, двух- и трехфакторные модели. Параметры моделей рассчитаны по методу наименьших квадратов. Полный перечень моделей представлен с целью демонстрации всех возможных вариантов их построения, но это не означает равноценности моделей с точки зрения их информационной полезности.

Существуют два формальных метода определения числа факторных признаков, включаемых в модель. Первый состоит в том, чтобы факторы включались последовательно, один за другим. При этом введение нового фактора должно улучшать качество модели, т.е. делать ее более близкой к реальной картине. Обычно из набора заранее подобранных по тем или иным соображениям факторов в модель включают один, имеющий наиболее тесную связь с результативным признаком. После чего определяют коэффициент детерминации.

Детерминация в контексте статистического исследования означает количественное определение причинной обусловленности получаемых зависимостей. Принято считать, что коэффициент детерминации, равный квадрату индекса (коэффициента) корреляции, и измеренный в процентах, оценивает долю вариации результативного признака, обусловленную факторными признаками, включенными в модель, которая описывает поведение рассматриваемого показателя в зависимости от других показателей.

Если в модель включен один факторный признак (однофакторная модель), то квадрат коэффициента корреляции между результативным и факторным признаками полностью характеризует степень влияния данного факторного признака на результативный.

После того, как рассчитан коэффициент детерминации по однофакторной модели, в нее включают следующий факторный признак, у которого коэффициент парной корреляции выше, чем у других оставшихся факторных признаков. Проверку того, насколько точнее описывает изменение результативного признака двухфакторная модель, проводят с помощью критерия Фишера: Fрасч= D1 / D2 , где D1 и D2 - остаточные дисперсии, рассчитанные по одно- и двухфакторным моделям, причем D1>D2. Расчетную величину критерия Фишера сравнивают с табулированным значением для степеней свободы f=n-k-1, где n - число наблюдений, k - число факторных признаков. Сама величина остаточной дисперсии вычисляется по формуле Dj= (е(y^ – y)2) /( n-k-1), где y^ и y - соответственно расчетное и текущее значение изучаемого показателя. Если Fрасч > Fтабл, то уравнение, обеспечивающее меньшую остаточную дисперсию, существенно точнее описывает динамику изучаемого показателя. В противном случае существенность отличия моделей друг от друга не подтверждается и лучше использовать более простую модель.

При любом варианте событий (включается ли второй факторный признак или нет) переходят к следующему факторному признаку, и процедура расчетов повторяется.

Коэффициент детерминации показывает долю вариации результативного признака, обусловленную всеми включенными в модель факторными признаками. Если в модели присутствует несколько факторных признаков, то влияние каждого из них рассчитывается по выражению (8):

d y(i) = (ai * (еyj *xj(i)) /n - ysr *x sr(i))/(sy)2,

где dy(i) - доля i-го факторного признака в вариации результативного признака y (частный коэффициент детерминации), ai - коэффициент в уравнении множественной регрессии при xi, n - количество объектов в рассматриваемой совокупности, yj , *xj(i) - текущие значения результативного и i-го факторного признаков, ysr, xsr(i) - средние арифметические значения соответственно результативного и i-го факторного признаков, (sy)2 - дисперсия результативного признака.

Возможно использование формулы

d y(i) = ai * (n*еyj * xj(i) -- еyi *е xj(i))/( еyj2 -еyj*еyj).

В том и другом случае суммирование ведется по j, где j - номер объекта в совокупности (j=1, 2,…, n).


Страница: