Атмосфера
Азот, самый распространённый газ в воздушной тропосфере, химически мало активен. Являясь составной частью белков и их производных, он, тем не менее, усваивается большинством живых организмов не непосредственно из воздуха, а посредством азот-фиксирующих бактерий и водорослей.
Кислород, в отличие от азота, химически очень активный эле- мент. И наличие большой массы свободного (несвязанного) кислорода в современной атмосфере представляется парадоксаль- ным явлением. Парадокс этот находит объяснение в захоронении органического углерода в процессе фотосинтеза растений. Атмосфера питает кислородом воды океанов, озёр и рек. Специфическая функция кислорода – окисление органического вещества гетеротрофных организмов, горных пород и недоокис- лённых газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мёртвого органического вещества.
Подсчёты показывают, что в результате фотосинтеза в атмо- сферу ежегодно поступает 20 * 1016г. кислорода. При общем его содержании в атмосфере 1,2 * 1021 г. время одного оборота массы О2 в атмосфере равно примерно 6 тыс. лет.
Углекислого газа в атмосфере немного, но его роль в функци- онировании географической оболочки исключительно велика. Он представляет основной строительный материал для создания органического вещества при фотосинтезе:
6СО2 + 6Н2О + Энергия = С6Н12О6 + О2.
В процессе фотосинтеза используется углекислый газ не только атмосферы, но и океана. При деструкции органического вещества большая часть углекислого газа, затраченного на его создание, возвращается обратно в атмосферу и гидросферу. Меньшая часть его захороняется в земной коре в виде каменного угля, нефти, горючих газов и рассеянного органического вещества. Возникаю- щий дисбаланс углекислого газа в атмосфере исправляется выносом его из недр Земли вулканами.
Значение углекислого газа атмосферы для географической обо- лочки не ограничивается его участием в создании органического вещества. Важные последствия имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаёт так на- зываемый парниковый эффект, выраженный в повышении температуры воздуха вблизи поверхности Земли.
В нижних 20 км. содержится водяной пар. В отличие от других газов содержание водяного пара во влажном воздухе не постоянно и зависит от температуры воздуха и характера подстилающей поверхности. Его содержание у земной поверхности колеблется в среднем от 0,2% в полярных широтах до 2,5% в экваториальных.
При оценке водяного пара следует иметь в виду, что он:
1) поддерживает парниковый эффект, так как задерживает длинно- волновое тепловое излучение земной поверхности;
2) представляет основное звено больших и малых круговоротов влаги;
3) влияет на климат, повышая температуру воздуха при конденсации водяных паров.
Соотношение газов в сухом воздухе в тропосфере почти не изменяется с высотой. Что касается водяного пара, то его процентное содержание с высотой уменьшается.
На высоте 20 – 30 км. («озоновая завеса») расположен слой озона (О3). Озон образуется под действием ультрафиолетовых лучей Солнца, и хотя общее количество его незначительно, играет важную роль в атмосфере. Озон обладает способностью поглощать ультрафиолетовую радиацию Солнца и тем самым предохраняет животный и растительный мир от её губительного действия.
В воздухе тропосферы всегда присутствует примесь аэрозолей – мельчайших жидких и твёрдых частиц, находящихся во взвешенном состоянии. Это:
- пыль земного и космического прохождения, микрометеориты,
метеориты и продукты их сгорания – Al, Fe, Ni (14 * 106 т/год);
- твёрдые частицы дыма и пепла от лесных пожаров, сжигания топлива, извержения вулканов – C, S;
- частицы почвы и продукты выветривания горных пород – Si, Al;
- морская соль – NaCl, KCl, CaCl2, MgCl2;
- частицы органического происхождения – бактерии, микро- организмы (770 – 2200 Мт/год);
- выбросы цементного производства – Са;
- выбросы химических, металлургических производств – S, Pb, фенолы, хлорфторметаны, фреоны, CF2Cl2, CCl4.
В среднем над каждым квадратным сантиметром в воздухе «висит» 108 – 109 аэрозольных частиц. Особенно много их в городах и крупных промышленных центрах, где к аэрозолям добавляются выбросы в атмосферу вредных газов, их примесей, образующихся при сжигании топлива. Общее их содержание 250 – 450 Мт/год или 1,5 – 2,0 кг/м2 год.
Та или иная концентрация аэрозолей в атмосфере определяет её прозрачность, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли – ядра конденсации – способствуют превращению водяного пара в водяные капли.
3. Строение атмосферы.
Атмосфера простирается вверх на много сотен километров. Верхняя её граница, на высоте около 2000 – 3000 км, в известной мере условна, так как газы, её составляющие, постепенно разре- жаясь, переходят в мировое пространство. С высотой меняются химический состав атмосферы, давление, плотность, температура и другие её физические свойства. Химический состав воздуха до высоты 100 км. существенно не меняется. Несколько выше атмосфера также состоит главным образом из азота и кислорода. Но на высотах 100 – 110 км., под действием ультрафиолетовой радиации солнца, молекулы кислорода расщепляются на атомы и появляется атомарный кислород. Выше 110 – 120 км. кислород почти весь становится атомарным. Предполагается, что выше 400 – 500 км. газы, составляющие атмосферу, также находится в атомар- ном состоянии.
Давление и плотность воздуха с высотой быстро уменьшаются. Хотя атмосфера простирается вверх на сотни километров, основная масса её размещается в довольно тонком слое, прилегающем к поверхности земли в самых нижних её частях. Так, в слое между уровнем моря и высотами 5 – 6 км. сосредоточена половина массы атмосферы, в слое 0 – 16 км. – 90%, а в слое 0 – 30 км. – 99%. Такое же быстрое уменьшение массы воздуха происходит выше 30 км. Если вес 1 м3 воздуха у поверхности земли равен 1033 г., то на высоте 20 км. он равен 43 г., а на высоте 40 км. лишь 4 г.
На высоте 300 – 400 км. и выше воздух настолько разрежён, что в течение суток плотность его изменяется во много раз. Иссле-дования показали, что это изменение плотности связано с положе- нием Солнца. Наибольшая плотность воздуха около полудня, наименьшая – ночью. Объясняется это отчасти тем, что верхние слои атмосферы реагируют на изменение электромагнитного излу- чения Солнца.
Изменение температуры воздуха с высотой происходит также неодинаково. По характеру изменения температуры с высотой атмосфера делится на несколько сфер, между которыми располагаются переходные слои, так называемые паузы, где температура с высотой мало изменяется.